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Abstract—This paper proposes a data-driven algorithm for
locating the source of forced oscillations and suggests a physical
interpretation for the method. By leveraging the sparsity of forced
oscillations along with the low-rank nature of synchrophasor
data, the problem of source localization under resonance condi-
tions is cast as computing the sparse and low-rank components
using Robust Principal Component Analysis (RPCA), which can
be efficiently solved by the exact Augmented Lagrange Multiplier
method. Based on this problem formulation, an efficient and
practically implementable algorithm is proposed to pinpoint the
forced oscillation source during real-time operation. Further-
more, theoretical insights are provided for the efficacy of the
proposed approach, by use of physical model-based analysis,
specifically by highlighting the low-rank nature of the resonance
component matrix. Without the availability of system topology
information, the proposed method can achieve high localization
accuracy in synthetic cases based on benchmark systems and
real-world forced oscillations in the power grid of Texas.

Index Terms—Forced oscillations (FOs), Phasor Measurement
Unit (PMU), Resonant Systems, Robust Principal Component
Analysis (RPCA), Unsupervised Learning, Big Data.

I. INTRODUCTION

PHASOR measurement units (PMUs) enhance the trans-
parency of bulk power systems by streaming the fast-

sampled and synchronized measurements to system control
centers. Such finely-sampled and time-stamped PMU measure-
ments can reveal several aspects of the rich dynamical behavior
of the grid which are invisible to conventional supervisory
control and data acquisition (SCADA) systems. Among the
system dynamical behaviors exposed by PMUs, forced oscil-
lations (FOs) have attracted significant attention within the
power community. FOs are driven by periodical exogenous
disturbances that are typically injected by malfunctioning
power apparatuses such as wind turbines, steam extractor
valves of generators, or poorly-tuned control systems [1]–[3].
Cyclic loads, such as cement mills and steel plants, constitute
another category of oscillation sources [1]. The impact of such
injected periodic perturbation propagates through transmission
lines and results in FOs throughout the grid; some real-world
events of FOs since 1966 are reported in [1].
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The presence of FOs compromises the security and reliabil-
ity of power systems. For example, FOs may trigger protection
relays to trip transmission lines or generators, potentially
causing uncontrollable cascading failures and unexpected load
shedding [4]. Moreover, sustained FOs reduce device lifespans
by introducing undesirable vibrations and additional wear and
tear on power system components; consequently, failure rates
and maintenance costs of compromised power apparatuses
might increase [4]. Therefore, timely suppression of FOs is
important to system operators.

One effective way of suppressing a forced oscillation is to
locate the oscillation’s source, a canonical problem that we
call forced oscillation localization, and then to disconnect it
from the power grid. A natural attempt to conduct forced
oscillation localization could be tracking the largest oscillation
over the power grid, under the assumption that measurements
near the oscillatory source are expected to exhibit the most
severe oscillations, based on engineering intuition. However,
counter-intuitive cases may occur when the frequency of the
periodic perturbation lies in the vicinity of one of the natural
modes of the power system, whence a resonance phenomenon
is triggered [5]. In such cases, PMU measurements exhibit-
ing the most severe oscillations may be geographically far
from where the periodic perturbation is injected, posing a
significant challenge to system operators in pinpointing the
forced oscillation source. It is worth noting that such counter-
intuitive cases are more than a mere theoretical concern:
one example occurred at the Western Electricity Coordinating
Council (WECC) system on Nov. 29, 2005, when a 20-MW
forced oscillation initiated by a generation plant at Alberta
incurred a tenfold larger oscillation at the California-Oregon
Inter-tie line that is 1100 miles away from Alberta [3]. Such
a severe oscillation amplification significantly compromises
the security and reliability of the power grid. Hence, it is
imperative to develop a forced oscillation localization method
that is effective even in the challenging but highly hazardous
cases of resonance [6].

In order to pinpoint the source of FOs, several localization
techniques have been developed. In [7], forced oscillation
localization is achieved based on the following observation: the
measurements near the source manifest distinct signatures in
their magnitude or phase responses, in comparison to far away
measurements. Such an observation is interpretable based on
classic generator models, but whether it is valid or not in a
power system with complex generator dynamics remains an
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open question [7]. In [2], the authors leverage the oscillation
energy flows in power networks to locate the source of
sustained oscillations. In this energy-based method, the energy
flows can be computed using the preprocessed PMU data,
and the power system components generating the oscillation
energy are identified as the oscillation sources. In spite of the
promising performance of the energy-based method [2], the
rather stringent assumptions pertaining to knowledge of load
characteristics and the grid topology may restrict its usefulness
to specific scenarios [6], [8]. Reference [8] provides a com-
prehensive summary of FO localization methods. More recent
research on FO localization is reported in [9] and [10]. In [9],
the oscillation source is located by comparing the measured
current spectrum of system components with one predicted by
the effective admittance matrix. However, the construction of
the effective admittance matrix requires accurate knowledge
of system parameters that may be unavailable in practice.
In [10], generator parameters are learned from measurements
based on prior knowledge of generator model structures, and,
subsequently, the admittance matrix is constructed and used for
FO localization. Nevertheless, model structures of generators
might not be known beforehand, owing to the unpredictable
switching states of power system stabilizers [11]. Thus, it
is highly desirable to design a FO localization method that
does not heavily depend upon availability of the first-principle
model and topology information of the power grid.

In this paper, we propose a purely data-driven yet physically
interpretable approach to pinpoint the source of FOs in the
challenging resonance case. By leveraging the sparsity of
the FO sources and the low-rank nature of high-dimensional
synchrophasor data, the problem of forced oscillation lo-
calization is formulated as computing the sparse and low-
rank components of the measurement matrix using Robust
Principal Component Analysis (RPCA) [12]. Based on this
problem formulation, an algorithm for real-time operation is
designed to pinpoint the source of FOs. The main merits of the
proposed approach include the following: 1) It does not require
any information on dynamical system model parameters or
topology, thus providing an efficient and easily deployable
practical implementation; 2) It can locate the source of FOs
with high accuracy, even when resonance phenomena occur;
and 3) Its efficacy can be interpreted by physical model-based
analysis.

The rest of this paper is organized as follows: Section
II elaborates on the forced oscillation localization problem
and its main challenges; in Section III, the FO localization
is formulated as a matrix decomposition problem and a FO
localization algorithm is designed; Section IV provides theo-
retical justification of the efficacy of the algorithm; Section V
validates the effectiveness of the proposed method in synthetic
cases based on benchmark systems and real-world forced
oscillations in the power grid of Texas; Section VI summarizes
the paper and poses future research questions.

II. LOCALIZATION OF FORCED OSCILLATIONS AND
CHALLENGES

A. Mathematical Interpretation

The dynamic behavior of a power system in the vicinity
of its operation condition can be represented by a continuous
linear time-invariant (LTI) state-space model:

ẋ(t) = Ax(t) +Bu(t), (1a)
y(t) = Cx(t) +Du(t), (1b)

where state vector x ∈ Rn, input vector u ∈ Rr, and output
vector y ∈ Rm collect the deviations of state variables,
generator/load control setpoints, and measurements, from their
respective steady-state values. Accordingly, matrices A ∈
Rn×n, B ∈ Rn×r, C ∈ Rm×n, and D ∈ Rm×r are termed as
the state matrix, the input matrix, the output matrix, and the
feed-forward matrix, respectively. Typically, the input vector u
is not streamed to control centers, so the feed-forward matrix
D is assumed to be a zero matrix of appropriate dimension.
Denote by L = {λ1, λ2, . . . , λn} the set of all eigenvalues
of the state matrix A. The power system (1) is assumed to
be stable, with all eigenvalues λi ∈ C being distinct, i.e.,
Re{λi} < 0 for all i ∈ {1, 2, . . . , n} and λi 6= λj for all i 6= j.
Note that the assumption on eigenvalue distinctness is only
used for the purpose of simplifying the process of obtaining
the time-domain solution of outputs in Section IV. Due to a
large amount of symbols in this paper, the key symbols are
summarized in the appendix for the convenience of readers.

We proceed to formally define the concepts of a forced
oscillation source and source measurements. Suppose that the
l-th input ul(t) in the input vector u(t) varies periodically due
to malfunctioning components (generators/loads) in the grid.
In such a case, ul(t) can be decomposed into J frequency
components, viz.,

ul(t) =
J∑
j=1

Pj sin(ωjt+ θj), (2)

where ωj 6= 0, Pj 6= 0 and θj are the frequency, amplitude
and phase displacement of the j-th frequency component
of the l-th input, respectively. Equation (2) is effectively
equivalent to the Fourier series representation of a periodic
signal [13]. As a consequence, the periodic input will result
in sustained oscillations present in the measurement vector y.
The generator/load associated with input l is termed as the
forced oscillation source, and the measurements at the bus
directly connecting to the forced oscillation source are termed
as source measurements.

In particular, suppose that the frequency ωd of an injection
component is close to the frequency of a poorly-damped mode,
i.e., there exists j∗ ∈ {1, 2, . . . , n},

ωd ≈ Im{λj∗}, Re{λj∗} ≈ 0. (3)

In such a case, resonance phenomena can be observed [5].
Hence, (3) is adopted as the resonance condition in this paper.
Studies on envelop shapes of FOs are reported in [14].

In a power system with PMUs, the measurement vector y(t)
is sampled at a frequency of fs (samples per second). Within
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a time interval from the FO starting time up to time instant
t, the time evolution of the measurement vector y(t) can be
discretized by sampling and represented by a matrix called a
measurement matrix Yt = [ytp,q], which we formally define
next. Without loss of generality, we assume that the FOs start
at time 0. The following column concatenation defines the
measurement matrix Yt up to time t:

Yt :=
[
y(0), y(1/fs), . . . y(btfsc /fs)

]
, (4)

where b·c denotes the floor operation. The i-th column of
the measurement matrix Yt in (4) suggests the “snapshot”
of all synchrophasor measurements over system at the time
(i− 1)/fs. The k-th row of Yt denotes the time evolution of
the k-th measurement deviation in the output vector of the
k-th PMU. Due to the fact that the output vector may contain
multiple types of measurements (e.g., voltage magnitudes,
frequencies, etc.), a normalization procedure is introduced
as follows. Assume that there are K measurement types.
Denote by Yt,i = [yt,ip,q] ∈ Rr0×c0 the measurement matrix of
measurement type i, where i = {1, 2, . . . ,K}. The normalized
measurement matrix Ynt = [yn,t

p,q] is defined by

Ynt =
[

Y >t,1
‖Yt,1‖max

,
Y >t,2

‖Yt,2‖max
, . . .

Y >t,K
‖Yt,K‖max

]>
, (5)

where ‖·‖max returns the largest absolute element of a matrix.
The forced oscillation localization problem is equivalent to

pinpointing the forced oscillation source using measurement
matrix Yt. Due to the complexity of power system dynamics,
the precise power system model (1) may not be available to
system operators, especially in real-time operation. Therefore,
it is assumed that the only known information for forced
oscillation localization is the measurement matrix Yt. In brief,
the first-principle model (1) as well as the perturbation model
(2) is introduced mainly for the purpose of defining FO
localization problem and theoretically justifying the data-
driven method proposed in Section III, but is not needed for
the proposed algorithm.

B. Main Challenges of Pinpointing the Sources of Forced
Oscillation

The topology of the power system represented by (1)
can be characterized by an undirected graph G = (B, T ),
where vertex set B comprises all buses in the power system,
while edge set T collects all transmission lines. Suppose
that the PMU measurements at bus is ∈ B are the source
measurements. Then bus j is said to be in the vicinity of the
FO source if bus j is a member of the following vicinity set:

V0 = {j ∈ B|dG(is, j) ≤ N0}, (6)

where dG(i, j) denotes the i-j distance, viz., the number of
transmission lines (edges) in a shortest path connecting buses
(vertices) i and j; the threshold N0 is a nonnegative integer.
In particular, V0 = {is} for the source measurement at bus is,
if N0 is set to zero.

Intuitively, it is tempting to presume that the source mea-
surement can be localized by finding the maximal absolute
element in the normalized measurement matrix Ynt, i.e., ex-
pecting that the most severe oscillation should be manifested

in the vicinity of the source. However, a major challenge for
pinpointing the FO sources arises from the following (perhaps
counter-intuitive) fact: the most severe oscillation does not
necessarily manifest near the FO source, in the presence of
resonance phenomena. Following the same notation as in (4)
and (6), we term a normalized measurement matrix Ynt as
counter-intuitive case, if

i∗ /∈ V0, (7)

where i∗ can be obtained by finding the row index of the
maximal element in the measurement matrix Yt, i.e.,

[i∗, j∗] = arg max
i,j

∣∣yn,t
i,j

∣∣. (8)

It is such counter-intuitive cases that make pinpointing the FO
source challenging [5]. Figure 1 illustrates one such counter-
intuitive case, where the source measurement (red) does not
correspond to the most severe oscillation. Additional examples
of counter-intuitive cases can be found in [6]. Although the
counter-intuitive cases are much less likely to happen than
the intuitive ones (in terms of frequency of occurrence), it
is still imperative to design an algorithm to pinpoint the FO
source even in the counter-intuitive cases due to the hazardous
consequences of the FOs under resonance conditions.

Fig. 1. One counter-intuitive case [6] from the IEEE 68-bus benchmark
system [15]: the black curves correspond to the non-source measurements;
the red curve corresponds to the source measurement.

III. PROBLEM FORMULATION AND PROPOSED
METHODOLOGY

In this section, we formulate the FO localization problem
as a matrix decomposition problem. Then, we present a FO
localization algorithm for real-time operation.

A. Problem Formulation

Given a measurement matrix Yt up to time t with one type
of measurement (without loss in generality), the FO source
localization is formulated as decomposing the measurement
matrix Yt into a low-rank matrix Lt and a sparse matrix St:

Yt = Lt + St, (9a)
rankLt ≤ γ, (9b)
‖St‖0 ≤ β, (9c)
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where the pseudo-norm ‖·‖0 returns the number of non-zero
elements of a matrix; the non-negative integer γ is the upper
bound of the rank of the low-rank matrix Lt, and the non-
negative integer β is the upper bound on the number of
non-zero entries in the sparse matrix St. Given non-negative
integers γ and β, it is possible to numerically find {Lt, St}
via alternating projections [6]. The source measurement index
p∗ can be tracked by finding the largest absolute value in the
sparse matrix St, viz.,

[p∗, q∗]> = arg max
p,q

∣∣stp,q∣∣. (10)

The intuition behind the formulation (9) is as follows. As
the power grid is an interconnected system, measurements
at different buses have certain electrical couplings, resulting
in correlations between the measurements. As a result, the
measurements at different buses should exhibit a “general
trend,” [6] which can be captured by a low-rank matrix Lt.
The measurements near the FO source are assumed to deviate
most from its corresponding component in “general trend” (the
low-rank matrix Lt). The deviation is supposed to be captured
by the matrix St. As the number of the measurements near the
FO source is limited, the matrix St is assumed to be sparse.

Due to the prior unavailability of the upper bounds γ and
β [6], the matrix decomposition problem shown in (9) is
reformulated as an instance of Robust Principal Component
Analysis (RPCA) [12]:

min
St

‖Yt − St‖? + ξ‖St‖1, (11)

where ‖·‖? and ‖·‖1 denote the nuclear norm and l1 norm,
respectively; the tunable parameter ξ regulates the extent of
sparsity in St. The formulation in (11) is a convex relaxation
of (9). Under some assumptions, the sparse matrix St and the
low-rank matrix Lt can be disentangled from the measurement
matrix Yt [12] by diverse algorithms [16]. The exact Lagrange
Multiplier Method (ALM) is used for numerically solving the
formulation (11). Recall that the measurement matrix Yt has r0
rows and c0 columns. The tunable parameter ξ is suggested
to be 1/

√
k0, where k0 = max{r0, c0}. Such selection of

ξ is justified via the mathematical analysis in [12]. For a
measurement matrix containing multiple measurement types,
(11) can be modified by replacing Yt with Ynt.

B. FO Localization Algorithm for Real-time Operation

Next, we present a FO localization algorithm for real-time
operation, using the formulation (11). In order to determine
the starting time of forced oscillations, we can leverage the
methods reported in [17], [18]. The method reported in [17]
is used to detect FOs by comparing the periodogram of PMU
measurements with a frequency-dependent threshold. In [18]
the authors propose a method that uses geometric analysis
on streaming synchrophasor data to estimate the starting and
end times of FOs. Once periodic FOs are detected by the
method reported in [17], the starting time of the FOs can be
estimated by the time-localization algorithm proposed in [18].
A window of measurements with the starting time is collected
into forming the measurement matrix. Then Algorithm 1 is

triggered for pinpointing the FO source. In Algorithm 1, T0
and ξ are user-defined parameters.

Algorithm 1 Real-time FO Localization
1: Update YT0

by (4);
2: Obtain YnT0

by (5);
3: Find St in (11) via the exact ALM for chosen ξ;
4: Obtain p∗ by (10);
5: return p∗ as the source measurement index.

Algorithm 1 can be leveraged to illustrate the intuition
behind formulation (9) described in Section III-A. A mea-
surement matrix Yt can be formed based on the measurements
visualized in Figure 1. Algorithm 1 can decompose Yt into a
low-rank matrix Lt and a sparse matrix St. Figure 2 visualizes
Yt, Lt, and St in a normalized fashion. For each matrix, we
take the absolute values of their entries and normalize the
absolute version of the entries by the maximal absolute entry
in the corresponding matrix. The magnitudes of the normalized
entries are represented by color: The bigger the magnitude of
an entry, the yellower is its color, and conversely the smaller
the magnitude of an entry, the bluer is its color. The “general
trend” of the measurements is captured by the low-rank matrix
Lt in Figure 2(b). The deviations from the “general trend” are
captured by the sparse matrix St. In Figure 2(c), very few
entries are colored with yellow, and these entries correspond
measurements deviating most from the “general trend”, while
most entries are colored with dark blue, suggesting that most
entries are close to zero. The entry colored with brightest color
corresponds to Bus 65 which is the bus closest to the force
oscillation source (Generator 13).

IV. THEORETICAL INTERPRETATION OF THE
RPCA-BASED ALGORITHM

This section aims to develop a theoretical connection be-
tween the first-principle model in Section II and the data-
driven approach presented in Section III. We start such an
investigation by deriving the time-domain solution to PMU
measurements in a power system under resonance conditions.
Then, the resonance component matrix for the power grid is
obtained from the derived solution to PMU measurements.
Finally, the efficacy of the proposed method is interpreted by
examining the rank of the resonance component matrix.

A. PMU Measurement Decomposition

For the power system with r inputs and m PMU measure-
ments modeled using (1), the k-th measurement and the l-th
input can be related by

ẋ(t) = Ax(t) + blul(t) (12a)
yk(t) = ckx(t), (12b)

where column vector bl ∈ Rn is the l-th column of matrix B
in (1), and row vector ck ∈ Rn is the k-th row of matrix C.
With the assumption on eigenvalue distinctness, let x = Mz,
where z denotes the transformed state vector and matrix M is
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(a) (b) (c)

Fig. 2. Visualization of the measurement matrix Yt (a), the low-rank matrix Lt (b), and the sparse matrix St (c)
.

chosen such that the similarity transformation of A is diagonal,
then

ż(t) = Λz(t) +M−1blul(t) (13a)
yk(t) = ckMz(t), (13b)

where Λ = diag(λ1, λ2, . . . , λn) = M−1AM is a diagonal
matrix stacking the eigenvalues of A. Denote by column
vector ri ∈ Cn and row vector li ∈ Cn the right and left
eigenvectors associated with the eigenvalue λi, respectively.
Accordingly, the transformation matrices M and M−1 can be
written as [r1, r2, . . . , rn] and [l>1 , l

>
2 , . . . , l

>
n ]>, respectively.

The transfer function in the Laplace domain from l-th input
to k-th output is

H(s) = ckM(sI − Λ)−1M−1bl =
n∑
i=1

ckrilibl
s− λi

. (14)

For simplicity, assume that the periodic injection ul only
contains one component with frequency ωd and amplitude Pd,
namely, J = 1, ω1 = ωd and P1 = Pd in (2). Furthermore,
we assume that before t = 0− the system is in steady state,
viz., x(0−) = 0. Let sets N and M′ consist of the indices of
real eigenvalues, and the indices of complex eigenvalues with
positive imaginary parts, respectively, viz.,

N = {i ∈ Z+|λi ∈ R}; M′ = {i ∈ Z+| Im(λi) > 0}.
(15)

Then the Laplace transform for PMU measurement yk is

Yk(s) =

(
n∑
i=1

ckrilibl
s− λi

)
Pdωd
s2 + ω2

d

=

[∑
i∈N

ckrilibl
s− λi

+
∑
i∈M′

(
ckrilibl
s− λi

+
ckr̄i l̄ibl
s− λ̄i

)]
Pdωd
s2 + ω2

d

(16)
where (̄·) denotes complex conjugation.

Next, we analyze the components resulting from the real
eigenvalues and the components resulting from the complex
eigenvalues, individually.

1) Components Resulting from Real Eigenvalues: In the
Laplace domain, the component resulting from a real eigen-
value λi is

Y D
k,i(s) =

ckrilibl
s− λi

Pdωd
s2 + ω2

d

. (17)

The inverse Laplace transform of Y D
k,i(s) is

yD
k,i(t) =

ckriliblPdωd
λ2i + ω2

d

eλit +
ckriliblPd√
λ2i + ω2

d

sin(ωdt+ φi,l)

(18)
where φi,l = ∠

(√
λ2i + ω2

l + jλi

)
, and ∠(·) denotes the

angle of a complex number.
2) Components Resulting from Complex Eigenvalues: In

the Laplace domain, the component resulting from a complex
eigenvalue λi = −σi + jωi is

Y B
k,i(s) =

(
ckrilibl
s− λi

+
ckr̄i l̄ibl
s− λ̄i

)
Pdωd
s2 + ω2

d

. (19)

The inverse Laplace transform of Y B
k,i(s) is

yB
k,i(t) =

2Pdωd|ckrilibl|√
(σ2
i + ω2

d − ω2
i )2 + 4ω2

i σ
2
i

e−σit cos(ωit+ θk,i − ψi)+

2Pd|ckrilibl|
√
ω2
d cos2 θk,i + (σi cos θk,i − ωi sin θk,i)2√

(σ2
i − ω2

d + ω2
i )2 + 4ω2

dσ
2
i

×

cos(ωdt+ φi − αi),
(20)

where θk,i = ∠(ckrilibl); ψi = ∠
(
σ2
i + ω2

d − ω2
i − j2σiωi

)
;

φi = ∠(σ2
i − ω2

d + ω2
i − j2ωiσi), and αi = ∠[ωd cos θk,i +

j(σi cos θk,i − ωi sin θk,i)].
3) Resonance Component: Under the resonance condition

defined in (3), the injection frequency ωd is in the vicinity
of one natural modal frequency ωj∗ , and the real part of the
natural mode is small. We define a new set M ⊂ M′ as
M = {i ∈ Z+| Im(λi) > 0, |ωi − ωj∗ | < κ1, |Re(λi)| < κ2},
where κ1 and κ2 are small and nonnegative real numbers. For
i ∈M, the eigenvalue λi = −σi + jωi satisfies ωi ≈ ωd and
σi ≈ 0. Then ψi ≈ −π2 , φi ≈ −π2 , and αi ≈ −θk,i. Therefore,
equation (20) can be simplified as

yB
k,i(t) ≈ yR

k,i(t) =
Pd|ckrilibl|

σi
(1− e−σit) sin(ωdt+ θk,i)

(21)
for i ∈M. In this paper, yR

k,i in (21) is termed the resonance
component in the k-th measurement.
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In summary, a PMU measurement yk(t) in a power system
(1) under resonance conditions can be decomposed into three
classes of components, i.e.,

yk(t) =
∑
i∈N

yD
k,i(t) +

∑
i/∈M∪N

yB
k,i(t) +

∑
i∈M

yR
k,i(t). (22)

B. Observations on the Resonance Component and the
Resonance-free Component

1) Severe Oscillations Arising from Resonance Component:
Figure 3(a) visualizes the resonance component of a PMU
measurement (at Bus 401) in the IEEE 68-bus benchmark
system. As can be observed from Figure 3(a), the upper en-
velop of the oscillation increases concavely at the initial stage
before reaching a steady-stage value (about 0.1 in this case).
The closed-form approximation for such a steady-state value
is Pd|ckrilibl|/σi. For a small positive σj∗ associated with
eigenvalue λj∗ , the steady-state amplitude of the resonance
component may be the dominant one. If a PMU measurement
far away from the source measurements is tightly coupled with
the eigenvalue λj∗ , it may manifest the most severe oscillation,
thereby confusing system operators with regard to FO source
localization. Therefore, the presence of resonance components
may cause the counter-intuitive cases defined by (7), (8).
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Fig. 3. (a) Visualization of the resonance component of bus voltage mag-
nitudes in the IEEE 68-bus benchmark system based on equation (21): the
resonance components of the voltage magnitude measurement at Bus 40 (blue
curve) and its envelopes (red-dash curves). (b) Resonance-free components of
the source voltage magnitude measurement (red) and the non-source voltage
magnitude measurement (black) in the IEEE 68-bus benchmark system.

2) Location Information on FO Source from the Resonance-
free Component: As the resonance components of the set of
all PMU measurements mislead system operators with respect
to FO localization, we proceed by excluding the resonance
component from (22), and checking whether if the remaining
components exhibit any spatial information concerning the
FO source. The superposition of the remaining components
is termed as resonance-free. Specifically, for a power system
with known physical model (1), the resonance-free component
yF
k in the k-th PMU measurement time series can be obtained

by:
yF
k(t) =

∑
i∈N

yD
k,i(t) +

∑
i/∈M∪N

yB
k,i(t). (23)

The visualization of the resonance-free component for all
PMU measurements in the IEEE 68-bus system is shown in

1The measurements at Bus 40 exhibit the largest oscillations but they are
non-source measurements.

Figure 3(b) under a certain FO scenario2. Under the same FO
scenario, Figure 1 visualizes all PMU measurements yk(t)
in (22). In Figure 3(b), while the complete measurements
yk(t) are counter-intuitive, the resonance-free components
yF
k(t) convey the location information on the FO source–

the resonance-free component of the source measurement
exhibits the largest oscillation. Such localized response of
resonance-free components might be an extension of the no-
gain property of an electric network rigorously justified in [19],
[20]. Future work will examine what kinds of power systems
possess localization property of resonance-free components in
a theoretically rigorous fashion.

C. Low-rank Nature of Resonance Component Matrix

The physical interpretation of the efficacy of the RPCA-
based algorithm is illustrated by examining the rank of the ma-
trix containing all resonance components for all measurements,
which we call the resonance component matrix, formally
defined next. Similar to (4), the resonance component yR

k (t)
in the k-th measurement can be discretized into a row vector
yR
k,t:

yR
k,t :=

[
yR
k (0), yR

k (1/fs), . . . yR
k (btfsc /fs)

]
. (24)

Then, the resonance component matrix Y R
t can be defined as

a row concatenation as follows:

Y R
t :=

[(
yR
1,t

)>
,
(
yR
2,t

)>
, . . .

(
yR
m,t

)>]>
. (25)

Theorem 1. For the linear time-invariant dynamical system
(1), the rank of the resonance component matrix Y R

t defined
in (25) is at most 2.

Proof. Based on (21), define Ek := Pd|ckrilibl|/σi. Then

yR
k,i(t) =(1− e−σit) sin(ωdt)Ek cos(θk,i)+

(1− e−σit) cos(ωdt)Ek sin(θk,i).

We further define functions f1(t), f2(t) and variables g1(k),
g2(k) as follows: f1(t) := (1 − e−σit) sin(ωdt); f2(t) :=
(1 − e−σit) cos(ωdt); g1(k) := Ek cos(θk,i); and g2(k) :=
Ek sin(θk,i). Then, yR

k,i(t) can be represented by yR
k,i(t) =

f1(t)g1(k) + f2(t)g2(k).
The resonance component matrix Y R

t up to time t can be
factored as follows:

Y R
t =


g1(1) g2(1)
g1(2) g2(2)

...
...

g1(m) g2(m)


[
f1(0) f1( 1

fs
) . . . f1( btfsc

fs
)

f2(0) f2( 1
fs

) . . . f2( btfsc
fs

)

]
.

(26)
Denote by vectors g1 and g2 the first and second columns

of the first matrix in the right hand side (RHS) of (26),
respectively; and by vectors f1 and f2 the first and second rows

2A sinusoidal waveform with amplitude 0.05 per unit (p.u.) and frequency
0.38 Hz is injected into the IEEE 68-bus system via the voltage setpoint of
generator 13. The information on the test system is elaborated in Section V.
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of the second matrix in the RHS of (26). Then (26) turns to
be

Y R
t =

[
g1 g2

] [f1
f2

]
. (27)

Given (27), it is clear that the rank of the resonance component
matrix Y R

t is at most 2.

Typically, for a resonance component matrix Y R
t with m

rows and btfsc columns, owing to min(m, btfsc) � 2, the
resonance component matrix Y R

t is a low-rank matrix, which
is assumed to be integrated by the low-rank component Lt
in equation (9). As discussed in Section IV-B2, the source
measurement can be tracked by finding the maximal absolute
entry of the resonance-free matrix (Yt − Y R

t ). According to
(10), the PMU measurement containing the largest absolute
entry in the sparse component St is considered as the source
measurement. Then, it is reasonable to conjecture that the
sparse component St in (9) captures the part of the resonance-
free matrix that preserves the location information of FO
source. Thereby, a theoretical connection between the pro-
posed data-driven method in Algorithm 1 and the physical
model of power systems described in equation (1) can be
established. Although forced oscillation phenomena have been
extensively studied in physics [21], the low-rank property, to
the best of our knowledge, is first investigated in this paper.

Through the FO case shown in Figure 1, we next examine
the entries corresponding to the largest amplitude channel (Bus
40) and the source measurement (Bus 65) in the measurement
matrix Yt, the low-rank matrix Lt, and the sparse matrix St. In
Figure 4(a), the blue-dash curve and the red curve respectively
present voltage magnitudes at the largest amplitude channel
(Bus 40) and the source measurement (Bus 65). Figure 4(b)
shows the components captured by the low-rank matrix Lt
corresponding to measurements at Bus 40 (blue-dash) and Bus
65 (red). Figure 4(c) shows the components captured by the
sparse matrix St corresponding to measurements at Bus 40
(blue-dash) and Bus 65 (red). As can be observed in Figure
4(a), the measurement at Bus 40 (blue-dash curve) comprises
mainly the resonance component. As we have established in
Theorem 1, the resonance component matrix is by nature low-
rank. Therefore, the measurement at Bus 40 is better captured
by the low-rank matrix than the measurement at Bus 65, as
is shown in Figure 4(b). What is left in the sparse matrix
pinpoints the forced oscillation source. Besides, in Figure
4, part of resonance-free component is also captured by the
low-rank matrix, which cannot be explained by Theorem 1.
Note that Theorem 1 offers one possible interpretation of the
effectiveness of the proposed algorithm, but it is not claimed
to be a fully rigorous interpretation of why the algorithm
works, however as is verified by the above figure it indeed
sheds a lot of light in its interpretation. As this paper focuses
on the development of one possible data-driven localization
algorithm, future work will investigate a broader category of
possible algorithms and their theoretical underpinnings.

A natural question is if the robust-PCA procedure can
pinpoint the source of other types of oscillations, such as
natural oscillations. The difficulty to answering this question
is that “source of natural oscillation” is not well defined. In

a forced oscillation event, the FO source is defined as the
power system component with external periodic perturbations,
and one obvious solution to suppressing the oscillation is to
disconnect the source from the grid. In a natural oscillation
event, one may suppress it by tuning control apparatus of a
set of generators or by decreasing the load level. In such a
case, should the source be deemed the tuned generators or
the decreased load? In brief, we believe it is challenging to
consent on a definition of the “source” of natural oscillations.
Due to the ambiguity in the definition of natural oscillation
sources, this paper only focuses on the localization of forced
oscillations.

V. CASE STUDY

In this section, we validate the effectiveness of Algorithm 1
using data from IEEE 68-bus benchmark system and WECC
179-bus system. We first describe the key information on the
test systems, the procedure for obtaining test data, the pa-
rameter settings of the proposed algorithm, and the algorithm
performance over the obtained test data. Then the impact
of different factors on the performance of the localization
algorithm is investigated. Finally, we compare the proposed
algorithm with the energy-based method reported in [2]. As
will be seen, the proposed method can pinpoint the FO sources
with high accuracy without any information on system models
and grid topology, even when resonance exists.

A. Performance Evaluation of the Localization Algorithms in
Benchmark Systems

1) IEEE 68-bus Power System Test Case: The system
parameters of the IEEE 68-bus power system are reported
in the Power System Toolbox (PST) [15] and its topology
is shown in Figure 5. Let V = {1, 2, . . . , 16} consist of the
indices of all 16 generators in the 68-bus system. Based on
the original parameters, the following modifications are made:
1) the power system stabilizers (PSS) at all generators, except
the one at Generator 9, are removed, in order to create more
poorly-damped oscillatory modes; 2) for the PSS at Generator
9, the product of PSS gain and washout time constant is
changed to 250. Based on the modified system, the linearized
model of the power system (1) can be obtained using the
command “svm_mgen” in PST. There are 25 oscillatory
modes whose frequencies range from 0.1 Hz to 2 Hz, which
are shown in Figure 8(a). Denote by W = {ω1, ω2, . . . , ω25}
the set consisting all 25 modal frequencies of interest. The
periodic perturbation ul in (2) is introduced through the
voltage setpoints of generators. The analytical expression of
ul is 0.05 sin(ωdt), where ωd ∈ W .

We create FOs in the 68-bus system according to set V×W ,
where× is the Cartesian product. For element (i, ωj) ∈ V×W ,
the periodic perturbation ul(t) with frequency ωj is injected
into the grid through the voltage setpoint of generator i at time
t = 0. Then, the system response is obtained by conducting a
40-second simulation. The bus voltage magnitude deviations
constitute the output/measurement vector y(t) in (1). Finally,
the measurement matrix is constructed based on (4), where the
sampling rate fs is 60 Hz. By repeating the above procedure

Authorized licensed use limited to: Texas A M University. Downloaded on April 20,2020 at 02:12:55 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2982267, IEEE
Transactions on Power Systems

8

0 5 10 15 20

-0.1

-0.05

0

0.05

0.1

(a)

0 5 10 15 20

-0.1

-0.05

0

0.05

0.1

(b)

0 5 10 15 20

-5

0

5

10
10

-3

(c)

Fig. 4. Visualization of voltage magnitudes (a), components in low-rank matrix Lt (b) and components in sparse matrix St (c) at Bus 65 (red) and Bus 40
(blue dash): Bus 65 is the bus closest to the source, while the most severe oscillation appear at Bus 40.

for each element in set V ×W , we obtain 400 measurement
matrices (|V × W|). Among the 400 measurement matrices,
44 measurement matrices satisfy the resonance criteria (7), (8)
with N0 = 0 and they are marked as the counter-intuitive cases
which are used for testing the performance of the proposed
method. Some typical waveforms in the 44 test cases are
shown in [6].

Fig. 5. The IEEE 68-bus power system [6]: the generator in the solid circle
is the actual source generator; the generator in the dash circle is the identified
source.

The tunable parameters T0 and ξ in Algorithm 1 are set
to 10 and 0.0408, respectively. Measurements of voltage
magnitude, phase angle and frequency are used for constituting
the measurement matrix. Then, we apply Algorithm 1 to the
44 counter-intuitive cases. Algorithm 1 pinpoints the source
measurements in 43 counter-intuitive cases and, therefore,
achieves 97.73% accuracy without any knowledge of system
models and grid topology.

Next, we scrutinize the geographic proximity between the
identified and actual source measurements in the single failed
case. The algorithm outputs that the source measurement is
located at Bus 64 (highlighted with a solid circle in Figure
5), when a periodic perturbation with frequency 1.3423 Hz
is injected into the system through the generator directly
connecting to Bus 65 (highlighted with a dash circle in Figure
5). As can be seen in Figure 5, the identified and actual source
measurements are geographically close. Therefore, even in the
failed cases, the proposed method can effectively narrow the
search space.

2) WECC 179-bus System Test Case: This subsection
leverages the open-source forced oscillation dataset [22] to
validate the performance of the RPCA-based method. The
offered dataset is generated via the WECC 179-bus power
system [22] whose topology is shown in Figure 7(a). The
procedure for synthesizing the data is reported in [22]. The
available dataset includes 15 forced oscillation cases with
single oscillation source, which are used to test the proposed
method. The visualization for Case F-3 is shown in Figure 6.
In each forced oscillation case, the measurements of voltage
magnitude, voltage angle and frequency at all generation buses
are used to construct the measurement matrix Yt in (4), from
the 10-second oscillatory data, i.e., T0 = 10. Then, the 15
measurement matrices are taken as the input for Algorithm 1,
where the tunable parameter ξ is set to 0.0577.

Fig. 6. Voltage magnitude visualization in Case F-3: the voltage magnitude
of the bus connected with the forced oscillation source (red); the voltage
magnitudes of the remaining buses (black).

For the WECC 179-bus system, the proposed method
achieved 93.33% accuracy. Next, we present how geographi-
cally close the identified FO sources are to the ground truth
in the seemingly incorrect case. In Case FM-6-2, a periodic
rectangular perturbation is injected into the grid through the
governor of the generator at Bus 79 which is highlighted with
a red solid circles in Figure 7(b). The source measurement
identified by the proposed method is at Bus 35 which is
highlighted by a red dash circle. As can be seen in Figure
7(b), the identified FO source is geographically close to the
actual source. Again, even the seemingly wrong result can help
system operators substantially narrow down the search space
for FO sources.
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(a) (b)

Fig. 7. WECC 179-bus power system [22]: (a) complete topology; (b)
zoomed-in version of the area in the yellow box in the left figure.
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Fig. 8. Eigenvalues of the IEEE 68-bus system (a) and the WECC 179-bus
system in Cases F-1 and FM-1 (b): the eigenvalues whose damping ratio
less than 5% are in the left-hand side of the red-dash line.

3) ERCOT Forced Oscillation Event: We leverage the
field measurements from a collaborative project with Electric
Reliability Council of Texas (ERCOT), in order to test the
localization algorithm in a realistic setting. Figure 9 shows
the FOs observed by ERCOT. The FOs manifested themselves
in seven PMU measurements on voltage magnitudes. For
information privacy, the names of the PMU locations are
replaced by indices 1, 2, . . . , 7, and the FO starting point
is set to 0 seconds. In Figure 9, it can be observed that
the PMU measurements contain high frequency components
resulting from measurement noise and load fluctuation. We
apply a band-pass filter from 0.1 Hz to 1 Hz to process the
raw PMU measurements. Subsequently, we use a 10-second
time window of the filtered data for forming the measurement
matrix. Finally, the proposed algorithm indicates that PMU
4 is the one near the FO source. The localization result was
reported to ERCOT, and ERCOT confirmed the correctness
of the result. It is worth noting that no topology information
was provided to our research team. Therefore, localization
algorithms based on system topology, such as the Dissipating
Energy Flow approach, are not applicable in this study.

B. Algorithm Robustness

The subsection focuses on testing the robustness of the
proposed algorithm under different factors which include
measurement types, noise, and partial coverage of PMUs. The
impact of each factor on the algorithm performance will be
demonstrated as follows.
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Fig. 9. Voltage Magnitudes during the ERCOT forced oscillation event.

TABLE I
IMPACT OF MEASUREMENT TYPES ON LOCALIZATION PERFORMANCE

Types |V | ∠V |V |,∠V f
68-bus System 84.09% 50.00% 84.09% 52.27%
179-bus System 86.67% 33.33% 73.33% 20.00%
Types |V |, f ∠V, f |V |,∠V, f N/A
68-bus System 93.18% 59.09% 97.73% N/A
179-bus System 80.00% 46.67% 93.33% N/A

1) Impact of Measurement Types on Algorithm Perfor-
mance: Under all possible combinations of nodal measure-
ments (voltage magnitude |V |, voltage angle ∠V and fre-
quency f ), the localization accuracies of the proposed algo-
rithm in the two benchmark systems are reported in Table I. As
can be observed in Table I, the maximal accuracy is achieved
when voltage magnitudes, voltage angles and frequencies are
used to constitute the measurement matrix in (4).

2) Impact of Noise on Algorithm Performance: Table II
records the localization accuracy under different levels of
noise. In Table II, the signal-to-noise ratio (SNR) is defined
as follows:

SNR = 10 log(Ws/Wn) (dB)

where Ws is the sum of squared measurement deviations over
a period (10 seconds in this paper); and Wn is the sum of
squared magnitudes of the corresponding noise over the same
period. The noise superimposed upon each measurement has a
Gaussian distribution with zero mean and variance σn. At each
experiment for each measurement, the variance σn is chosen
such that the corresponding SNR is achieved. From Table II,
we conclude the proposed algorithm performs well under the
cases with SNR less than 30 dB.

3) Impact of Partial Coverage of Synchrophasors on Algo-
rithm Performance: In practice, not all buses are equipped
with PMUs. Besides, available PMUs may be installed on
buses near oscillation sources, instead of buses on which

TABLE II
IMPACT OF NOISE LEVEL ON LOCALIZATION PERFORMANCE

SNR 90dB 70dB 50dB 30dB 10dB
68-Bus 97.73% 97.73% 97.73% 97.73% 56.82%
179-Bus 93.33% 93.33% 93.33% 93.33% 73.33%
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oscillation sources are directly connected. A test case is
designed for testing the performance of the proposed algorithm
in the scenario described above. In this test case, the locations
of all available PMUs are marked with stars in Figure 7(a).
The test result is listed in Table III. As illustrated in Table
III, the proposed method can effectively identify the available
PMUs that are close to oscillation sources, even though no
PMU is installed on generation buses.

Independent System Operators (ISOs) may also need to
know whether FO sources are within their control areas.
However, ISOs might not be able to access PMUs near FO
sources, limiting the usefulness of the proposed algorithm. For
example, assume that there are two ISOs, i.e., ISO 1 and ISO 2,
in Figure 7(a), where the red dash line is the boundary between
the control areas of the two ISOs. It is possible that FO sources
are at the ISO 1 control area, whereas ISO 2 only can access
the PMUs at the buses marked with red stars. In order to apply
the RPCA-based method, ISO 2 needs to access one PMU in
the area controlled by ISO 1, say, the PMU marked with a
purple star in Figure 7(a). In the F-2 dataset, the FO source
is located at Bus 79 which is marked with a red circle in Figure
7(a). With the data collected from PMUs marked with red and
purple stars, the proposed algorithm outputs the bus marked
with a purple star, indicating that the FO source is outside the
control area of ISO 2.

4) Impact of External Excitation on Localization Perfor-
mance: The external excitation is assumed to result mainly
from load fluctuation. In order to introduce load fluctuation,
load dynamics are included in the 68-bus benchmark system,
and 33 real power setpoints along with 33 reactive power
setpoints on load are considered as the augmented inputs. The
above modification on the 68-bus system can be achieved by
enabling load modulation in the Power System Toolbox (PST)
[15]. Following the procedure described in Section V-A-1, 43
counter-intuitive cases are obtained. For the j-th case of the
43 counter-intuitive cases, we have a pair of numbers (i′j , ω

′
j),

where ω′j is the frequency of a periodic perturbation and i′j
is the source generator index. Let set P consist of such pairs,
i.e., P = {(i′1, ω′1), (i′2, ω

′
2), . . . , (i′j , ω

′
j), . . . , (i

′
43, ω

′
43)}.

Note that the number of state variables in the 68-bus system
with load dynamics is 268, whereas the number of state
variables in the 68-bus system used in Section V-A is 202.
Effectively, the 68-bus system in this subsection is a different
system from the 68-bus system used in Section V-A, from the
perspective of control theory, as the numbers of their state
variables are distinct. Therefore, it is not surprising that the
number of counter-intuitive cases in this subsection is different
from that in Section V-A.

The 66 augmented setpoints fluctuate around their nominal
values, which can be considered to be external excitations.
Denote by ∆uLd(t) ∈ R66 the load setpoint deviations from
their nominal values at time t. Assume that vector ∆uLd has
a Gaussian distribution with zero mean and covariance matrix
σextI66, i.e., ∆uLd(t) ∼ N (0, σextI66), where σext is a scalar,
and I66 is a 66 by 66 identity matrix. Due to the excita-
tion ∆uLd, the frequency fluctuates under normal operating
condition as observed in Figure 10(a). Figure 10(b) shows
how the system frequency range varies as scalar σext changes.

In Figure 10(b), each vertical line segment corresponds to
the frequency range under a load fluctuation with parameter
σext: the upper terminal is the highest system frequency for
each given σext; and the lower terminal is the lowest system
frequency with corresponding σext. One observation from
Figure 10(b) is that as scalar σext increases, it is more likely
that the system frequencies lie in a wider range. The normal
range of frequency in power systems is from 59.96 Hz to 60.04
Hz [23], [24]. As shown in Figure 10(b), the range of system
frequencies are out of the normal range under the excitation
with σext = 0.2. We use the random excitations ∆uLd(t) with
σext = 0.15 to mimic real-world load fluctuation.
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Fig. 10. (a) Frequency at Bus 1 under normal operation condition with load
fluctuation; (b) Ranges of system frequency (vertical blue-solid line segments)
due to different levels of load fluctuation: the normal frequency range (59.96-
60.04 Hz) is represented by two horizontal red-dash lines.

The random excitations ∆uLd with σext = 0.15 and set P
are leveraged to obtain 43 test cases. The data acquisition pro-
cedure is described in what follows. For element (i′j , ω

′
j) ∈ P ,

the periodic perturbation ul(t) with frequency ω′j is injected
into the system via the voltage setpoint of generator i′j at
t = 0. At each experiment, the 68-bus system is excited by
one realization of ∆uLd. Then, a 40-second simulation is
conducted in order to obtain the system response. By repeating
the above procedure for all elements, 43 test cases with load
fluctuation are obtained. For these test cases, a 2-Hz low-pass
filter is applied to process the measurements. The proposed
algorithm achieves 90.70% localization accuracy.

5) Impact of Time-window Length on Localization Per-
formance: In this section, we investigate the impact of the
window width T0 on the algorithm’s performance. Fig. 11
summarizes the localization accuracy with different time-
window widths T0 in both the 68-bus and 179-bus systems. In
Fig. 11, we observe a trade-off between the time required for
decision making and the localization accuracy for the 68-bus
system (the blue-dash line) with the given range of T0: 100%
accuracy can be achieved with T0 = 12 (or 13) seconds; the
price we pay for the high localization accuracy is a wider time
window, i.e., more decision-making time.

In practice, the optimal window width T ∗0 can be obtained
by off-line studies on physical model-based simulations or
historical FO events. Assume that we have N1 options for the
window width T0, represented by T0 := {T01, T02, . . . , T0N1

}.
For each window width option, say, T0i, we run the local-
ization algorithm on all available FO events and compute
the localization accuracy ηi. The optimal window width T ∗0
is the i∗-th element in the set T0, which maximizes ηi for
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TABLE III
IMPACT OF PARTIAL COVERAGE OF SYNCHROPHASOR ON ALGORITHM PERFORMANCE

Case Name F-1 FM-1 F-2 F-3 FM-3 F-4-1 F-4-2 F-4-3 F-5-1 F-5-2 F-5-3 F-6-1 F-6-2 F-6-3 FM-6-2
Identified Source 8 8 78 69 69 69 78 78 78 78 78 78 78 78 78
Nearest PMU 8 8 78/69 78/69 78/69 78/69 78/69 78/69 78/69 78/69 78/69 78/69 78/69 78/69 78/69

i = 1, 2, . . . , N1. Such an optimal window width T ∗0 is applied
in the localization algorithm 1 during real-time operation.

6 8 10 12
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80

85

90

95

100

Fig. 11. Impact of T0 on Localization Performance: the localization accuracy
for the 68-bus system (blue-solid line) and the 179-bus system (red-dash line).

C. Comparison with Energy-based Localization Method

This subsection aims to compare the proposed localization
approach with the Dissipating Energy Flow (DEF) approach
[2]. We use the FM-1 dataset (Bus 4 is the source measure-
ment) [22] for the purpose of comparing DEF method with
the proposed algorithm. PMUs are assumed to be installed at
all generator buses except ones at Buses 4 and 15. Besides,
Buses 7, 15 and 19 are also assumed to have PMUs. Without
any information on grid topology, the RPCA-based method
suggests the source measurement is at Bus 7 which is in the
vicinity of the actual source. However, topology errors may
cause DEF-based method to incur both false negative and
false positive errors, as will be shown in the following two
scenarios.

1) Scenarios 1: The zoomed-in version of the area within
the blue box in Figure 7(a) is shown in Figure 12, where
the left and right figures are the actual system topology and
the topology reported to a control center, respectively. All
available PMUs are marked with yellow stars in Figure 12.
Based on these available PMUs, the relative magnitudes and
directions of dissipating energy flows are computed according
to the FM-1 dataset and the method reported in [2]. With
the true topology, the FO source cannot be determined, as
the energy flow direction along Branch 8-3 cannot be inferred
based on the available PMUs. However, with the topology
error shown in Figure 12(b), i.e., it is mistakenly reported
that Bus 29 (Bus 17) is connected to Bus 3 (Bus 9), it can
be inferred that the energy flow with relative magnitude of
0.4874 is injected into the Bus 4, indicating that Bus 4 is
not the source measurement. Such a conclusion contradicts
the ground truth. Therefore, with such a topology error, the
dissipating energy flow method leads to a false negative error.

(a) (b)

Fig. 12. Zoomed-in version of the area in the blue box at Figure 7 (a):
actual topology (left); topology reported in a control center (right). Relative
magnitudes and direction of energy flows are labeled with red numbers and
arrows, respectively.

2) Scenario 2: Similar to Scenario 1, topology errors exist
within the area highlighted by a green box in Figure 7(a),
whose zoomed-in version is shown in Figure 13. As shown in
Figure 13(a), it can be inferred that an energy flow with relative
magnitude of 0.171 injects into Bus 15 with the information
of actual topology and available PMUs, indicating Bus 15 is
not a source. However, with the reported system topology, the
generator at Bus 15 injects to the rest of grid an energy flow
with magnitude of 0.0576, suggesting the source measurement
is at Bus 15. Again, such a conclusion contradicts with the
ground truth and, hence, incurs a false positive error.

(a) (b)

Fig. 13. Zoomed-in version of the area in the green box at Figure 7 (a):
actual topology (left); topology reported in a control center (right).

VI. CONCLUSIONS

In this paper, a purely data-driven but physically inter-
pretable method is proposed in order to locate forced oscil-
lation sources in power systems. The localization problem
is formulated as an instance of matrix decomposition, i.e.,
how to decompose the high-dimensional synchrophasor data
into a low-rank matrix and a sparse matrix, which can be
done using Robust Principal Component Analysis. Based on
this problem formulation, a localization algorithm for real-
time operation is presented. The proposed algorithm does not
require any information on system models nor grid topology,
thus providing an efficient and easily deployable solution
for real-time operation. Without the availability of system
topology, the proposed algorithm can achieve high localization
accuracy in synthetic cases based on benchmark systems and
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real-world forced oscillation in the power grid of Texas. In
addition, a possible theoretical interpretation of the efficacy
of the algorithm is provided based on physical model-based
analysis, highlighting the fact that the rank of the resonance
component matrix is at most 2. Future work will test the pro-
posed localization algorithm in conjunction with FO detection
algorithms, and explore a broader set of algorithms and their
theoretical performance analysis for large-scale realistic power
systems.
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APPENDIX A
NOTATION

A System matrix.
B Input matrix.
B Set of buses.
bl The l-th column of matrix B.
ck The k-th row of matrix C.
D Feed-forward matrix.
fs Sampling rate of synchrophasor.
is Bus index of the source measurement.
J Number of frequency components in ul.
K Number of measurement types.
λi The i-th eigenvalue of A.
L A set collecting all eigenvalues of A.
Lt Low-rank matrix.
li The i-th left eigenvector of A associated with

eigenvalue λi.
m Number of outputs.
M Matrix chosen so that M−1AM is diagonal.
M Set of the indices of the eigenvalues of A with

frequency near the injecting frequency ωd.
n Number of state variables.
N Set collecting the indexes of complex eigenval-

ues of A with positive imaginary part.
ξ Regularization parameter in RPCA formula-

tion.
ωj Frequency of j-th frequency component of ul.
ωd Frequency of the perturbation (one frequency

component).
Pd Amplitude of the perturbation (one frequency

component).
r Number of inputs.
ri Right eigenvector of A associated with eigen-

value λi.
St Sparse matrix.
s Variable of Laplace operator.
T0 Length of time window.
T Set consisting of all transmission lines.
u Input vector.
V0 Vicinity set collecting the indexes of the buses

near a forced oscillation source.
x State vector.
y Output/measurement vector.
Yt Measurement matrix.
Ynt Normalized measurement matrix.
yF
k Resonance-free component of the k-th mea-

surement.
yR
k Resonance component of the k-th measure-

ment.
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Y R
t Resonance component matrix.

z Transformed state vector.
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