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Abstract

We propose a neural
to  assessing  transient  stability in  power
electronic-interfaced  microgrid  interconnections.
The problem of transient stability assessment is cast as
one of learning a neural network-structured Lyapunov
function in the state space. Based on the function
learned, a security region is estimated for monitoring
the security of interconnected microgrids in real-time
operation. The efficacy of the approach is tested
and validated in a grid-connected microgrid and a
three-microgrid interconnection. A comparison study
suggests that the proposed method can achieve a less
conservative characterization of the security region, as
compared with a conventional approach [1].

Lyapunov  approach

1. Introduction

Microgrids provide promising solutions to
enhancing the resiliency of distribution systems
with increasing level of penetration of distributed
energy resources (DERs) [2-5]. The flexibility of
microgrids is enabled by their two operation modes:
an islanded mode and a grid-connected mode [6]. In
the grid-connected mode, one microgrid interconnects
with the rest of the distribution system via the point
of common coupling (PCC) [6] in order to achieve
entire system-wide optimal operation. A microgrid is
also capable of proactively transitioning to an islanded
mode, once the main grid loses its desirable functions or
severe faults in the microgrid compromise the security
of the main grid [3,4].

The control and management of grid-connected
microgrids is typically hierarchically structured [6-
8]. At the individual microgrid level, a microgrid
central controller (MGCC) regulates the interconnected
distributed generation units (DGUs) by tuning the
setpoints of their local controllers [2, 6, 7]. At
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the distribution-system level, a distribution system
operator (DSO) coordinates interconnected microgrids
by controlling microgrid interfaces, rather than directly
regulating DGUs [2]. Voltage source inverters (VSI)
generally serve as the interfaces of microgrids, where
various control strategies, such as master/slave, current
sharing, and frequency/angle droop methods [2,7,8], can
be implemented.

The rise of interest in deploying microgrids and
interconnection of multiple microgrids provides many
research challenges and opportunities in the design
and operation of their energy management systems.
One particular area of challenge is how to design safe
and efficient transient stability assessment tools for
future grid designers and operators. Transient stability
assessment for microgrids essentially aims to answer
the following question: Given an operating condition, to
what extent of disturbances can the microgrids tolerate?
A rigorous answer to such a question is much needed for
both offline design and online operation of microgrids.
For example, the stability assessment tool provides
microgrids’ designers with a criterion for optimal design
scheme selection. Such an assessment tool also allows
DSO to maintain greater situational awareness and helps
them to decide if corrective actions need be taken after
disturbances happen. The challenge of developing such
an assessment tool lies in the fact that microgrids and
their interconnections are nonlinear systems [2, 6] and
the dynamics of such nonlinear systems under large
disturbances need be analyzed.

In view of the above challenge, several
techniques are proposed for stability assessment
in both the microgrid level [6, 9-11] and the
microgrid-interconnection level [2, 4, 12-14].  This
paper focuses on the level of interconnected microgrids.
Within such a research scope, one possible method is to
leverage the energy function approach that is extensively
studied in analysis of large-scale transmission systems.
By assuming that the transmission lines are lossless,
the energy function approach constructs a system
behavior-summary function, namely, the energy



function, in order to certify the stability of a equilibrium
point. Reference [15] provides a thorough survey
for the energy function approach in transmission
systems. However, the qualitative difference between
transmission systems and interconnected microgrids
may prevent the energy approach developed for
transmission systems to migrate to interconnected
microgrids. For example, the lossless-line assumption
is a valid assumption for transmission systems, but
distribution lines in interconnected microgrids have a
lower reactance to resistance ratio in comparison with
transmission systems [6], rendering the lossless-line
assumption invalid and, thereby, leading to the
nonexistence of the energy function [1]. Without
the lossless-line assumption, reference [2] decouples
the slow and fast dynamics in the interconnected
microgrid and analyzes them separately: The stability
of slow dynamics is addressed by the linearization
technique [16] widely applied in bulk transmission
system applications [17-20]; and the transient stability
of fast dynamics is assessed by linear matrix inequality
(LMI). However, the proposed framework in [2] only
provides a binary (yes/no) answer to transient stability
of the interconnected microgrids. It is equally important
to estimate the extent of disturbances that can be
tolerated by interconnected microgrids.

This paper leverages the most recent advances
in machine learning and control theory to provide
rigorious and scalable assessment of transient stability
in interconnected microgrids. A neural Lyapunov
approach is proposed for assessing transient stability
of a microgrid interconnection.  The problem of
transient stability assessment is cast as one of learning
a neural network-structured Lyapunov function in
the state space. Based on the function learned,
a security region is estimated for monitoring the
security of interconnected microgrids in real-time
operation. The contribution of this paper is twofold:
1) It introduces a novel type of Lyapunov function
that can rigorously establish asymptotic stability of
interconnected microgrids and provide a security
region that allows microgrids’ designers/operators to
estimate the extent of disturbances that a microgrid
interconnection can tolerate; and 2) the proposed
approach does not require a special form of interface
dynamics of interconnected microgrids, allowing it to
analyzing realistic microgrid interconnections.

The rest of this paper is organized as follows:
Section 2 presents the mathematical description
of interconnected microgrid dynamics;  Section
3 elaborates procedures for learning a neural
network-structured Lyapunov function and finding
a security region by the Lyapunov function learned;

Section 4 tests and validates the proposed approach; and
Section 5 concludes the paper and points out the future
direction of this work.

2. Dynamics of Networked Microgrids

A future distribution system can be considered
as an interconnection of m PE-interfaced microgrids.
For microgrid ¢ € {1,2,...,m}, its PCC interface
dynamics can be described by the following differential
equations: [2,4]

TeiFi = Dei(QF — Qi) — (E; — E}),  (Ib)

where state variables §; and F; are the voltage angle
and voltage magnitude at the i-th PCC, respectively;
algebraic variables P; and @); are real and reactive power
injections to the i-th PCC; setpoints §;, E, P, and
Q7 are dispatched by a distribution system operator
based on steady-state security/economic studies; control
parameters Tx; and Tg; denote tracking time constants
of voltage angle and magnitude at PCC 7; and Dj4; and
Dg; are droop gains of voltage angle and magnitude
at PCC ¢ [2,4]. Note that equation (1) describes
the interface dynamics with angle droop control. If
the frequency droop control is deployed in microgrid
interfaces, the swing-equation type of dynamics will
replace (1).

Microgrid i is interconnected with other microgrids
through distribution lines which introduce the following
algebraic constrains:

Py = E}Gii+ Y EiEYi cos(8; — 0k — Oix), (2a)
ki
Qi = —E}Bii + Y _ EiEYisin(5; — 6, — 03), Vi,
k#i

(2b)

where Y;Z60;, denotes the element at the i-th row
and the k-th column of admittance matrix Y; Gj;
and B;; are real and imaginary parts of Y;;Z0;,
respectively. Suppose that the equilibrium point of the
m-microgrid interconnection described by differential
algebraic equations (DAEs) (1) and (2) is

o=[07,05,...,0% B E},.

»Ymo

L ER]T (3)

where variables ¢ and E} foralli € 1,2,...,m satisfy



P} = EPGy; + E E} EpYiy, cos(0] — 6 — Our),
kti
(4a)

Q; = —E*Bii+ Y _ E;E;Yysin(6; — 6; — 0ir), Vi.

ki
(4b)

Next we modify (1) and (2) such that the equilibrium
point of the modified DAEs is the origin of the state
space. Define new state variables

8 =0, — &F, (5a)
E! = E; — E},Vi. (5b)

With new state variables §; and E!, the i-th PCC
interface dynamics is characterized by differential
equations

TA¢5.§ = Dpi(P! — P;) — & (6a)
T B} = Dri(QF — Qi) — EI, (6b)

with algebraic equations
P, = (Ez/ + E:)QG“—F

> (E; + E})(E}, + E;)Yik cos(8}y, + 65, — 0ux),
k#i
(72)

Qi = —(E{ + E;)*Bu+

> (B} + ) (B, + By)Yasin(8), + 65, — 0a), Vi,
ki
(7b)

where 0}, = 0} — 9}, and ¢, = 67 — J5. The equilibrium
point of the dynamic system described by (6) and (7) is
the origin of the state space.

It is worth noting that if time constant 7Tg; is much
greater than T}, the evolution of ¢, is much faster than
that of E/. Therefore, when phase angles are the state
variables of interest, E. in (6) can be assumed to be a
constant [2], i.e., E; = 0. Such an assumption is called
the time-scale separation assumption [4]. Under the
time-scale separation assumption, the system equations
(6) and (7) can be simplified to

Trid, = Dai (P} — P;) — 61, Vi, (8)
where
Py = E*Gii + Y _ B} E;Yiy, cos(8j + 05, — Oik).
ki
©)

The system equations (6) or (8) can be written in the
following compact form:

x = f(x) (10)

where f(-) corresponds to (8) if Tg; >> Ta;, otherwise it
associates with (6); and the state vector x is defined by

_ [ 155/27"'76471]T Tg; > Tha;
(67,05, ..., B, E) ... E'"]T otherwise.
a1

The equilibrium point o’ of (10) is an m’-dimensional
zero vector, i.e., o' = 0,,,/, where m’ = m if Tg; > Th;,
otherwise m’ = 2m.

For the interconnected microgrids described by (10),
it is highly desirable for microgrids’ designers/operators
to know: 1) whether the equilibrium point o' is
asymptotically stable; and 2) how much state deviation
from o’ (caused by disturbances, say, line tripping) the
interconnected microgrids can tolerate.

3. Transient Stability Assessment

This section presents a neural Lyapunov approach
to transient stability assessment in the PE-interfaced
microgrid interconnection described by (10). First,
some background knowledge is presented in order to
show that one possible way to answer the two questions
raised at the end of Section 2 is to construct a Lyapunov
function. Then the Lyapunov function is learned
by minimizing the empirical Lyapunov risk [21] and
augmenting training samples. Finally, a region of
attraction is estimated based on the Lyapunov function
learned.

3.1. Background Definitions

We consider the interconnected microgrids
described by (10) with the equilibrium point o' at
the origin. A Lyapunov function [22] can be leveraged
to establish the stability of the equilibrium point o’ and
its definition is as follows:

Definition 1 If, in a ball Dy, := {x|||x||§ < R?}, there
exists a continuous differentiable scalar function V' such
that

* V is positive definite in Dp,
« V is negative definite in Dp

then the equilibrium point o' is asymprotically stable,
and the function V' is called a Lyapunov function.

In Definition 1, a positive/negative definite function
in Dg is defined as follows. A function F(x) is a



positive definite function in Dpg, if F(0) = 0 and
F(x) > 0forallx € Dg \ {0}. A function F(x) is a
negative definite function in Dp, if —F'(x) is a positive
definite function in Dg. V(x) is the time derivative of
V' (x) and it can be found by

dV(x) oV

V=—u ~ox

£(x). (12)

Definition 1 essentially suggests that we can answer
the first question raised at the end of Section 2 by
searching for a legitimate Lyapunov function V(x):
the asymptotic stability can be certified, if a Lyapunov
function can be found.

We proceed to address the second question at the
end of Section 2, viz., how much state deviation from
o’ the interconnected microgrids can tolerate. Such a
question boils down to finding a region in the state space
such that the system trajectory initiating from the region
never leaves the region and converges to the origin of
the state space [21,22]. In this paper, such a region is
called a security region R, which is formally defined as
follows:

Definition 2 A region R C R™ isa security region if
x(0) € R = x(00) = 0y AVE > 0(x(t) € R).

In Definition 2, 0,,/ is an m’-dimension zero vector;
and “A” means “and.” Based on Definition 2, a security
region is a subset of the domain of attraction [22]. If a
Lyapunov function V (x) is available, one estimation for
the security region R is

Re={x € Dglc e Ry, V(x) < c}. (13)

The security region estimation R. can be leveraged
for online stability assessment for interconnected
microgrids: if the state deviation from the
pre-dispatched equilibrium o’ falls within R., the
system is guaranteed to be secure, as state deviations
never leave R. and tend to zeros as time goes to infinity.

Definition 1 and equation (13) can be used to 1)
certify the asymptotic stability and 2) estimate a security
region around an equilibrium point dispatched by DSO.
However, the prerequisite to achieve the above two goal
is the availability of a Lyapunov function. In what
follows we present how to find such a function using
neural network.

3.2. Neural Network-structured Lyapunov
Function

We assume that the Lyapunov function V' (x) has a
neural-network structure, as such a structure enables us

to approximate a wide class of functions. The input
of the neural network is state vector x, and the output
is the value of V evaluated at x. The fundamental
computing units of the neural-network are neurons
which is a multiple-input-single-output system [23-25].
Suppose that the input of the neuron ¢ is xy. Neuron ¢
conducts a two-step computing procedure. First, neuron
1 takes linear combination of its input and obtain an
intermediate variable d;, i.e.,

d; = w;xg + b; (14)

where w; € R *[*ol collects weighting coefficients; and
b; € Ris abias coefficient. Second, neuron i evaluates a
nonlinear function (a.k.a. the activation function) at X
and returns the function value as its output yg. In this
paper, the hyperbolic tangent function is chosen to be
the activation function, i.e.,

y; = tanh(d;). (15)

The neurons are interconnected in a layered architecture
and constitute a neural network. A neural network
comprises an input layer, at least one hidden layer, and
an output layers. This paper uses a neural network with
one hidden layer to approximate the Lyapunov function
V(x).

We proceed to analyze the neurons in the hidden
layer. Let d[' collect all intermediate variables of
neurons in the hidden layer, i.e.,

dW =@t gl el T (16)

) » Yy
where dgl} denotes the intermediate variable of the i-th
neuron in the first layer, viz., the only hidden layer;
and ny is the number of neurons in the hidden layer.
Similarly, define y[! by

1 [
=yl )T (17
where ylm denotes the output of the i-th neuron in the
first layer. The two-step procedure of neurons in the
hidden layer leads to

d = wilx 4 bl (18a)
yll = tanh(dl) (18b)
where Wl .= [w%] collects the weighting coefficients

of the neurons in the hidden layer, whence its (4, k)-th
entry is the weighting coefficient for the k-th input of
the j-th neuron; column vector blll € R™ collects
bias coefficients; and tanh denotes the element-wised
hyperbolic tangent function.



Following the similar notation system, for the output
layer, we have

d? = i2lyl 4 pl2) (19a)

Y2 — tanh(d[21) (19b)

where d[? and bl?! are the intermediate variable and bias
coefficient vector of the neuron at the second (output)
layer, respectively; W2 € R*"™ collects weighting
coefficients of the neuron at the output layer; and y[2 €
R is the output of the neural network.

Let a vector a collect all unknown parameters in
W Wl bl and b2, One can randomly draw n
state vectors X1, Xa, ..., X, from the state space and
evaluate output of the neural network with parameters
o. These state vectors can be considered as training
examples for the neural network. A key question is
how to tune parameters « such that the neural network
represented by (18) and (19) behaves like a Lyapunov
function. Such a question is addressed by introducing a
cost function in the following sections.

3.3. Empirical Lyapunov Risk

In order to enable the neural network described by
(18) and (19) to behave like a Lyapunov function, the
following cost function, i.e., empirical Lyapunov risk, is
introduced to update parameters ox:

L) = =S max (0, ~Va (i) +

k=1
(20)

% Z max(0, Ve (xx))

k=1

where n is the number of training examples; and p
is the probability distribution according to which the
training examples are drawn. If V, is not a legitimate
Lyapunov function, positive penalties can be incurred in
the the cost function L, ,(c). The parameters o™ of
a legitimate Lyapunov function can minimize the cost
function L,, ,(cx). The cost function (20) is called the
Lyapunov risk in [21]. In practice, the “max” function
in (20) can be replaced by the Rectified Linear Unit
(ReLU) which is defined by

z z>0
ReLU(z):{O 220 21

Equation (20) is equivalent to

Lo p(a) = % Z (ReLU(~Va(x)) +ReLU(Va(xk)) ) -
k=1

. (22)
Besides, V,, can be evaluated by (12), viz.,
. IV
Vo = —f(x). 23
ox () 23)

Since the Lyapunov function candidate V,, (= ym) has
a neural-network structure, (%) can be expressed in
terms of the parameters in set o according to the chain

rule:
Vs OV 0d? oyl pdll]

dx — ad? oyl adll ox -

In (24),
2 1

Vo . 1o dd _wil od — Wi
942 @ Pyll] Toox ’
oyt 2, 1] 2 1]
5 = diag (1 —tanh*(di"),...,1 — tanh (dnH)) ,
where

df = wilx 4+ v},

]{1:172,...,’[1}1.

whence W,LH denotes the k-th row of matrix Wm; and

bl is the k-th entry of bl,
Suppose that we have a training set X with n i.i.d.
examples randomly drawn from the state space, i.e.,

X ={x1,X2,. .., Xk, ..., Xn} (26)

where x; ~ p for £ = 1,2,...,n. Based on
the training set X, one can find the coefficients of a
neural network-structured Lyapunov function candidate
by minimizing the Lyapunov risk, i.e.,

min L, ,(c). 27

The optimization problem (27) can be solved by the
stochastic gradient decent method. The pseudo-code of
the method is presented in Algorithm 1 where o is the
initial guess of the parameters; and 7 is the learning rate
specified by users.

3.4. Training Set Augment

The Lyapunov function candidate with parameters o
that is returned by Algorithm 1 may not be a legitimate



Algorithm 1 Learning Lyapunov Function Candidate

Algorithm 3 Lyapunov Neural Network

1: function Learning(X, ay,n, f, ny)

2: o< O

3 for x € X do

4 Compute V,, and V, via (18), (19), (12)
5 Evaluate L x| ,(c) through (22)

6: a s a—nValix ()
7 end for
8 return o.
9: end function

Lyapunov function. The reason is that the function with
o might violate the two conditions in Definition 1 when
it is evaluated at the training examples that are not in
X. Therefore, it is necessary to find counterexamples
that lead the candidate function V.« to violate the two
conditions in Definition 1 and add the counterexamples
to the training set X'.

Recent advances in satisfiability modulo theories
(SMT) can be leveraged to find the counterexamples.
The SMT solver finds the counterexamples by checking
the satisfiability of the following condition:

(I3 = r2) A (Valx) S0V Va(x) 2 0)  28)

where x € Dpg; r < min(l, ||z[|,) and “V” denotes

[TPR1]

or”. The condition ||x||§ > r? is added for avoiding
numerical issues [21]. The SMT solver, such as dReal
[26], can return a set S that comprises some x satisfying
condition (28). If no x can be found in Dg, S is an
empty set. Such a procedure is presented in Algorithm
2. Algorithm 3 shows the overall procedure to find a
legitimate Lyapunov function.

Algorithm 2 Training Set Augment
1: function AugSet(V,,f,r, R, X)
2: v1

3 Check (28) and find S via SMT solver
4 if S # O then

5: X+ XUS

6: else

7 v=0

8 end if

9: return v, X.

10: end function

3.5. Security Region Estimation

Given the neural network-structured Lyapunov
function V,~ learned from the state space, a security

1: inputs: X, ag,n,nu, £,7, R

v+1

while v = 1 do
a « Learning(X, ag,n, f,ngp)
7, X ¢+ RugSet (Va,f,r, R, X)

end while

Va* — Va - VQ(O)

return Vo«

IR A o

region can be estimated by (13). As c in (13) increases,
the estimated security region is enlarged. However, by
(13), the security region should be a subset of the valid
region D, indicating that ¢ cannot be too large. Denote
by c* the optimal c that maximizes the security region
estimation R.. One observation [27] is that

¢’ = min Vear (%) (29)

where 0Dp := {x|||x||§ = R?}.
We use the Lagrange multiplier method to solve (29).
The Lagrangian L(x,v) associated with (29) is

L(x,v) = Var (x) + v (Ix]3 - B2),  (30)

where v € R is a Lagrangian multiplier. Critical points
for (29) can be found by solving the following nonlinear
equations for x and v:

OL(x,v)
ox

x5 = R?. (31b)

=0 (31a)

Suppose that there are p critical points which are
collected by H := {%X1,%X2,...,%Xp}. The local
maxima and minima occur at these critical points in H.
Furthermore, the global minima can be obtained by

¢ = min Vg (x). (32)

xXEH

The security region that is used for online transient
stability assessment in a m-microgrid interconnection is

Re = {x|x € Dg,V(x) < c*}. (33)
4. Case Study

This section focuses on testing and validating the
neural Lyapunov approach. For the convenience of
visualization, we start from a single grid-connected
microgrid with two state variables. Then, the



proposed approach is validated in three PE-interfaced
interconnected microgrids. These test cases are
implemented in a Python environment and the
algorithms are built upon some open-source packages.
Algorithm 1 is implemented based on PyTorch. The
SMT solver in Algorithm 2 is dReal [26]. Besides,
nonlinear equations (31) are solved by SciPy.

4.1. Single Grid-connected Microgrid

In this subsection, the neural Lyapunov approach
is tested and validated in a grid-connected microgrid
(Figure 1). A microgrid with PCC 1 is connected to the
rest of the grid via a distribution line whose impedance
is 1.20 + 51.10 p.u. The pre-dispatched setpoints for
microgrid 1 are P = 0.3 p.u., @7 = —0.16 p.u.,
Ef =1.05p.u.,and 67 = £30°. The control parameters
of microgrid 1 are Tx1 = 1.2, Day = 0.2, Ty = 12,
Dyy1 = 0.2. The terminal behavior of the rest of the
grid is modeled as a constant voltage source and its
terminal voltage is 1.00 p.u. The time-scale separation
is not assumed, so we have two state variables §7 and
E} which are the deviations of ¢; and E; from their
equilibrium points. Note that the transient stability of
such a system cannot be assessed by the LMI-based
framework in [2], as it requires a special form of

dynamics.
}C

PCC1 Bus 2

Figure 1. A grid-connected microgrid

Algorithm 3 is used to learn a Lyapunov function
Var. In Algorithm 3, n = 0.01, ng = 6, » = 0.5,
and R = 1. There are 25 trainable parameters. After
370 iterations which take 18.69 seconds, Algorithm
3 outputs a Lyapunov function. Figure 2 visualizes
the Lyapunov function learned in the §}-F{-V space.
As it can be observed in Figure 2, the function is
positive-definite within the valid region D (inside the
red-dash circle). Figure 3 shows the visualization of
Ve suggesting that Vo is a negative-definite function
within the valid region Dg. Figures 2 and 3 indicate
that the function learned indeed behaves like a Lyapunov
function.

Given the Lyapunov function learned V- and its
valid region Dpg, by (32), we have ¢* = 0.9205 at
97 = —0.2953 and E} = 0.9554. Through (33), we
have a security region which is visualized in Figure 4.
In Figure 4, what is inside the red-solid circle is the
security region. Besides, the boundary of the security

== Valid region

Figure 2. Lyapunov function for the single
grid-connected microgrid

== Valid region

Figure 3. Lie derivative of Lyapunov function for the
single grid-connected microgrid

region (the red-solid circle) intersects with the boundary
of the valid region Dp (the red-dash circle) at point
(—0.2953,0.9554), which is consistent with the result
obtained from (32).

We proceed to compare the proposed neural-network
approach (NN) with the standard approach (std.)
reported in [1]. The comparison result is summarized in
Figure 4 where the region inside the blue-solid circle is
the security region estimated from the standard approach
while the blue-dashed circle is the valid region boundary
of the Lyapunov function from the standard approach. It
can be observed that the security region estimated from
the proposed approach (the region inside the red-solid
circle) is larger than the one from the standard approach.
This suggests the proposed method is less conservative
than the standard approach.

4.2. Three-microgrid Interconnection

This subsection leverages a three-microgrid
interconnection (Figure 5) to test and validate the
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Figure 4. Visualization of estimated security region
(SR) and valid region (VR)

proposed approach. In Figure 5, each microgrid is
connected to the rest of the grid through distribution
lines whose parameters are listed in Table 1. We
assume that there is clear time-scale separation and
the voltage angle deviations, i.e., 52 for i = 1,2,3,
are state variables of interest. The control parameters
for each microgrid are listed in Table 2. Besides, the
pre-designed setpoints are shown in Table 3

PCC2

@_!» !_@
PCC1 PCC3

Figure 5. Topology of a three-microgrid
interconnection

Table 1. Distribution line parameters of the
three-microgrid interconnection

Branch | R (p.u.) | X (p.u.)
1-2 1.2030 1.1034
1-3 1.5042 1.3554
2-3 1.4680 1.1550

A neural network-structured Lyapunov function is
learned through Algorithm 3 where n = 0.01, ng =
6, » = 0.5, and R = 1. There are 31 trainable
parameters. After 630 iterations which take 169.13
seconds, Algorithm 3 returns a Lyapunov function.
Figures 6 and 7 visualize the Lyapunov function learned
and its time derivative in three-dimension space, where

Table 2. Control parameters of the three-microgrid

interconnection
MG1 | MG2 | MG 3

Tai | 12 1.0 0.8
Dai | 0.2 0.2 0.2
Tvi | 12 10 16
Dv; | 0.2 0.2 0.2

Table 3. Pre-dispatched Setpoints of the
three-microgrid interconnection

MG1 | MG 2 MG 3
o 0 55.67° | —45.37°
EF (pu.) 1 1.05 0.95
P* (p.u.) | 0.1706 | 1.4578 | —0.0013
Q" (pu) | 0.4222 | —0.1639 | 1.0997

state variable 8% is set to zero for the convenience of
visualization. Some supplementary figures are provided
in Appendix A. As it can be observed in Figures 6 and
7, the function learned behaves like a Lyapunov function
within the valid region Dp (inside the red-dash circle),
as the function learned is positive except around the
origin, and its time derivative is negative except around
the origin.

== = Valid region

20.50

57 2%0.00 55 075 e\
1 (rad ) 050 ¢ 75 100 -1.00 b v

Figure 6. Visualization of the Lyapunov function in
the 61-95-V space.

We proceed to estimate the security region based on
the learned Lyapunov function V,-. By (32), we have
c* = 0.7037. Therefore, the estimated security region is

Ro.7037 = {x|||x[|3 < 1, Vo (x) < 0.7037}.

Next we show how to utilize such a region to
monitor the security of the interconnected microgrids
in real-time operation. Suppose that due to some
disturbances, the system state deviation becomes
x(0) = [0.9150, 0.1886, —0.1980], i.e., 67 (0) = 0.9150
rad., 05(0) = 0.1886 rad., and 65(0) = —0.1980
rad. Such initial states fall within the security region
Ro.7037, suggesting that the system trajectory will
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Figure 7. Visualization of the time derivative of
Lyapunov function in the §}-85-V space

stay within the security region and converge to the
pre-dispatched equilibrium point. Such an assessment
does not require any time-domain simulation and it is
almost instantaneous.
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Figure 8. System response in time domain given the
initial condition
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Figure 9. Evolution of Lyapunov function along a
system trajectory

Figure 8 shows the time-domain simulation result
with the initial condition x(0). As it can be observed, the
states indeed converge to the pre-designed equilibrium
point which is the origin of the state space. The
result of the proposed approach matches the simulation
result. Besides, with the initial condition x(0), the
learned Lyapunov function can be evaluated in each time
instant. The time-domain evolution of the Lyapunov

function learned is presented in Figure 9, showing that
the function learned is positive and it strictly decreases
before the system reaches the equilibrium point.

5. Conclusion

In this paper, we propose a neural Lyapunov
approach to assessing transient stability in power
electronic-interfaced ~ microgrid  interconnections.
Transient stability assessment is formulated as a
problem of learning a neural network-structured
Lyapunov function in the state space. Based on the
function learned, a security region is estimated for
monitoring the security of interconnected microgrids in
real-time operation. The effectiveness of the approach
is tested and validated in a grid-connected microgrid
and a three-microgrid interconnection. Future work will
investigate the scalability and conservativeness of this
approach in larger systems.

A. Appendix: Supplementary Figures

Figures 10, 11, 12, and 13 visualize the learned
Lyapunov function and its time derivative in
three-dimension space. In Figures 10 and 13, 0}
is set to zero, while &/ is set to zero in Figures 12 and
13.
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Figure 10. Visualization of the Lyapunov function in
the §1-65-V space.
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Figure 11. Visualization of the time derivative of
Lyapunov function in the §}-83-V space
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Figure 12. Visualization of the Lyapunov function in
the §5-65-V space.
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Figure 13. Visualization of the time derivative of
Lyapunov function in the §5-05-V space
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