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Abstract—This paper proposes a method of selecting and/or
locating phasor measurement unit (PMU) signals for monitoring
critical oscillation modes in large power systems. A robust indi-
cator, modal participation ratio (MPR), is introduced to identify
critical PMU locations and signal channels, in order to monitor
modes of interest to power system operators. This indicator is
easy to compute in practice, and is theoretically rigorous based
on linear control theory and spectral analysis. This indicator
can suggest location and/or selection of PMUs in order to most
effectively observe modes of interest to power system operators.
The effectiveness and robustness of the algorithm is illustrated
in both modified 68-bus system and 140-bus system.

Index Terms—Oscillation monitoring, phasor measurement
unit (PMU), modal participation ratio.

I. INTRODUCTION

PHASOR measurement units (PMU) offer time-stamped
measurements with high sampling rate and consequently

are considered as a significant role for improving wide-area
monitoring, protection and control (WAMPAC) in the future
grid [1]. One key advantage of PMU systems compared
with the traditional supervisory control and data acquisition
(SCADA) systems is that, PMU systems can be applied to
real-time monitoring of electromechanical oscillations, thanks
to the high sampling rates of PMUs. Comparing with damped
oscillations, sustained oscillations draw more attention of
system operators, since it indicates stability issues of the
system, therefore corrective actions need be taken once they
are observed. However, due to the uneven distribution of modal
information among various measurements [2], [3], some oscil-
lation modes could only be monitored clearly through several
critical PMU devices and signal channels, thereby causing the
different significance of signals in terms of monitoring critical
oscillations. As the coverage rate of PMUs increases in recent
years, although all PMU signals feeding to control centers
are supposed to be utilized in a proper manner, the signals
rich of critical modal information should be processed with
top priority in the context of oscillation monitoring, given the
high cost of computation and communication. Therefore, one
natural question from the perspective of system operators is
that, which PMU device(s) and signal channel(s) could provide
the sufficient observability for critical oscillations of their
interest, and whether further PMU deployments are necessary
for monitoring critical oscillations. In other words, PMUs
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should be selected and/or placed in such a way that all modes
of interest should manifest themselves as dominant modes,
instead of being hidden, in the signals selected for observing
them, once these modes are excited.

In view of the above question raised by system operators,
several approaches can be applied to identify critical PMU
locations for oscillation monitoring. The basic idea of these
approaches is to design an indicator to quantify the coupling
between modes and measurements, then the locations of PMUs
for observing critical modes are ranked based on the indicator.
The indicator can be calculated using both data-driven and
model-based approach. The initial purpose of data-driven ap-
proaches is to select signals for power system ambient modal
estimation (AME) introduced in [4], [5]. In [6], two factors to
quantify the steepness and distinctness of the spectrum of the
modes are defined to select signals for AME. However, these
factors are calculated based on the measurements of existing
PMUs. Hence, no suggestion on the further deployment of
PMUs is offered, if some modes of interest cannot be observed
using existing PMUs. In [7], based on the parametric models
identified from measured or simulated data, the variance of
estimated damping ratios serves as an indicator to rank the
signals for estimating critical modes. This approach is based
on an identified statistic model. However, not all critical modes
can be reliably included in the identified model, and the modes
estimated from the identified model might contain numerical
artifacts [3], lacking of valid physical explanations, due to
the issue of model-structure selection. In fact, abundant modal
information can be computed from the first-principle model of
power system. Thus, a fundamental question is how to describe
the coupling between oscillation modes and measurements via
the first-principle model directly, instead of going through the
procedure of system identification, if a well-formed system
model is available.

In order to answer the preceding question, two existing
indicators based on system models seem to be able to suggest
location and/or selection of PMUs. A participation factor
(PF) initially introduced in [8] is applied to studying the
coupling between oscillation modes and system state variables.
However, the PF cannot provide the coupling between oscil-
lation modes and system outputs (i.e., PMU measurements),
rendering it ineffective for addressing the above problem. In
[9], a geometric measure (GM) is proposed for quantifying the
observability of a particular oscillation mode in system out-
puts. The GM is further applied to PMU placement problems
for maximizing observability of modes of interest [10] and
selecting control loop for wide-area controllers (WAC) [11].
However, one insight from [7], [12], [13] is that the distribution
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of modal parameter over the measurements depends both on
the inherent property of the system model and the character-
istic of excitation in most practical cases1, whereas the GM is
calculated from linearized system model without taking any
information from disturbance. Besides, the physical meaning
of quantified modal observability is still an open question. For
example, does a signal with high observability indicate the
mode is dominant in the given signal in terms of the spectral
analysis? Thus, an theoretically rigorous indicator containing
information from both the system and the disturbance is need
to be designed for prioritization or placement of PMUs.

In this paper, a robust indicator, modal participation ratio
(MPR), is introduced for identifying critical PMU locations
and signal channels, in order to better monitor power system
oscillations with specific oscillation modes. By exploiting both
the off-line model and the characteristic of disturbance in
power system, the indicator is calculated and applied for
prioritizing the PMUs in terms of observing critical modes. An
algorithm embedded with the proposed MPR is presented for
the following purposes: 1) it systematically identifies existing
PMU devices and signal channels, which provides the best
observability for critical oscillation modes; 2) it suggests the
optimal locations for further PMU deployments, in order to
enhance the observability for critical oscillation modes.

The rest of the paper is organized as follows. Section II
provides analytical decomposition of the PMU measurements
into various modes; Section III presents newly-introduced
factor MPR and the two-layer algorithm; Section IV validates
the performance of the proposed algorithm via simulation
studies; Section V summarizes this paper.

II. DECOMPOSITION OF PMU MEASUREMENTS INTO
VARIOUS MODES

The power system small-signal dynamics around a certain
operating condition can be described using the following
linearized differential and algebraic equations (DAEs):

ẋ = Ax +Bu (1a)
y = Cx (1b)

where x ∈ Rn is the internal state vector, representing the
state deviation from the steady state of the system; y ∈ Rm
and u ∈ Rd include m potential measurements and d
inputs, respectively. n × n matrix A results from the lin-
earizion of corresponding non-linear system around the equi-
librium point. Let

(
λ1, λ2, . . . , λn

)
,
(
r1, r2, . . . , ri, . . . , rn

)
and

(
lT1 , l

T
2 , . . . , l

T
i , . . . , l

T
n

)T
denote matrix A’s n distinct

eigenvalues, n right eigenvectors and n left eigenvectors,
respectively, where column vector ri ∈ Cn and row vector
li ∈ Cn are right and left eigenvectors associating with
λi, respectively. Each state variable is typically coupled with
others in the state vector x because of the non-diagonal matrix
A. Then modal decomposition is conducted to decouple all
state variables. Besides, we denote the operating condition

1The cases exclude the modes that are either unobservable or uncontrollable.

where the system is linearized as π0. Finally, the decoupled
representation of (1) is as follows

ż = Λz +M−1Bu (2a)
y = CMz (2b)

where z =
[
z1, z2, . . . , zi, . . . , zn

]T
and zi is ith mode

associating with eigenvalue λi; modal matrix M =[
r1, r2, . . . , ri, . . . , rn

]
, describing the mapping from vector

z to state vector x; Λ = M−1AM = diag
(
λ1, λ2, . . . , λn

)
.

M−1 can be denoted as
[
lT1 , l

T
2 , . . . , l

T
i , . . . , l

T
n

]T
, and u is[

u1, u2, · · · , uq, · · · , ud
]T

.
Power systems are exposed to various kinds of small dis-

turbances, e.g. load fluctuation, and sudden small change of
generator voltage reference or mechanical power. In order to
obtain a time-domain expression of the mode z under the
above disturbances, each element in u, say uq , can be modeled
as a step function as follows

uq(t) =

{
u0
q t ≥ 0,

0 t < 0,
(3)

where u0
q is a stochastic value uniformly distributed within

certain small range. At t = 0, u(0) = [u0
1, u

0
2, . . . u

0
q, . . . u

0
d]
T

and u0
q is uniformly distributed within a range of [a, b], i.e.

u0
q ∼ U(a, b), q ∈ {1, 2, · · · , d}, (4)

where [a, b] is chosen such that the system can be represented
by linearized model. Since all the elements in u are typically
scaled to be in the per-unit form, in this paper, [a, b] represents
a range close to zero.

Under the above assumption, the kth potential measurement
in y is expressed as

yk =

n∑
i=1

[
ckri

(
lix0 +

liBu0

λi

)
eλit

]
−

n∑
i=1

[
ckri

liBu0

λi

]
(5)

where ck is the kth row of C matrix. Equation (5) shows that
one particular measurement can be represented as the summa-
tion of the exponential terms and the constant terms under a
given disturbance, and its derivation is reported at Appendix A.
Let dki = ckri (lix0 + liBu0/λi). For the exponential terms
associating with a pair of complex eigenvalues λi = αi± jβi,
their summation mki is

mki = dkie
(αi+jβi)t + d̄kie

(αi−jβi)t

= 2

∣∣∣∣ckri(lix0 +
liBu0

λi

)∣∣∣∣ eαit cos(βit+ φi)
(6)

where

φi = tan−1
Im
(
ckri

(
lix0 +

∑d
q=1

libqu
0
q

λi

))
Re
(
ckri

(
lix0 +

∑d
q=1

libqu0
q

λi

))
and (̄·) is the conjugate operator.

Now we define three concepts mentioned frequently in this
paper. First, as we can see in (6), the summation of modes zi(t)
and its conjugate z̄i contributes to a sinusoidal term, which
represents one of the frequency components in the oscillation
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waveform. In order to distinguish mode definition in (2),
we define complex mode mki as the summation of modes
associating with a pair of conjugate eigenvalues, i.e. λi and λ̄i.
Second, the damping ratio ξi = |αi|/

√
α2
i + β2

i and frequency
βi manifest themselves in (6), so we define that the complex
mode m̂ki is the mode of interest if the corresponding damping
ratio ξ̂i is less than the user-defined threshold ε, and frequency
β̂i falls into a certain range. Threshold ε typically ranges from
0.05 to 0.1, representing poorly-damped (complex) modes.
It is worth noticing that we assume all modes of interest
to be observable and controllable. Besides, various range of
frequencies can be chosen for different purposes, e.g. it can
be chosen to be from 0.628 rad/s to 6.28 rad/s (0.1 Hz to 1
Hz) for observing inter-area oscillations. Third, for the sake
of convenience, we define

ψki = 2

∣∣∣∣ckri(lix0 +
liBu0

λi

)∣∣∣∣ (7)

as the initial amplitude of the complex mode i in the potential
measurement k, representing the amplitude of the complex
mode i at t = 0. Built upon the aforementioned definitions,
Equation (5) can be interpreted as a summation of complex
modes, exponential terms with real eigenvalues and constant,
which is

yk(t) =
∑
i∈M

ψkie
αit cos(βit+ φi)

+
∑
i∈N

dkie
λit −

n∑
i=1

ckriliBu0

λi

(8)

where

M = { i ∈ Z | Imλi > 0}, N = { i ∈ Z | Imλi = 0}
(9)

Built upon the above notation, the set of indices of modes of
interest M̂ can also be expressed as a subset of M, which is

M̂ =

{
i ∈M | Re(λi)

|λi|
≤ ε, Im(λi) ∈ [ωl, ωh]

}
(10)

where values ε, ωl and ωh can be chosen as suggested above
by users.

Equation (8) decomposes kth potential measurement from
the theoretical perspective and connect meter-reading wave-
form yk(t) with complex modes. Although (8) indicates the
potential measurement yk incorporates components of all
complex modes, not all modes can manifest themselves in
yk due to the eigen-structure of the system as well as the
uncertainty of initial condition x0 and external disturbance u0.
In fact, it is well accepted that each measurement has several
dominant modes [2], [3]. Therefore, a potential measurement
is said to be suitable for observing a given complex mode if
the complex mode can manifest itself as a dominant mode in
that measurement.

The physical meaning of dominant modes can be illustrated
in two ways. In the context of Equation (8), a dominant
complex mode intuitively means its initial amplitude should be
relatively large compared to those of the other complex modes
with similar damping ratio. From the perspective of frequency
domain analysis, the height of the corresponding peak in the

power spectral density (PSD) of the signal can be viewed as an
equivalent indicator to suggest the dominant complex modes,
since there should be a distinct peak right at the frequency of
the complex mode if such frequency component contributes
significantly to the total energy of the signal. Therefore, a
potential measurement suitable for observing a complex mode
mi with frequency fi should have a PSD with a distinct
peak right at fi, once mi is excited. The above discussions
suggest that the initial amplitude ψk,i indicates the height of
the corresponding peak in the PSD of measurement yk and,
therefore, serve as an indicator to select dominant modes in a
given measurement and to construct the mapping from modes
of interest to measurements.

However, the initial amplitude ψki of a complex mode
in a measurement is not sufficient for determining poten-
tial measurements suitable for oscillation monitoring, since
it depends on uncertain disturbances and initial conditions,
compromising the consistency of result of the dominant-mode
selection. Hence, we need to introduce an index which is
robust under various kinds of small disturbance in a statistical
sense. Besides, such index should be able to describe the
relative magnitude of the initial amplitude of each complex
mode and determine dominant modes in a given measurement.

III. PROPOSED INDICATOR AND ALGORITHM FOR
OBSERVING MODES OF INTEREST

In this section, modal participation ratio (MPR) is proposed
for quantifying the significance of a certain mode in a potential
measurement. Then, the comparison between the proposed
MPR and several existing indices is presented, in order to
demonstrate the advantage of the MPR. Finally, a two-layer
algorithm is introduced for selecting existing PMUs and sug-
gesting future PMU deployments to enhance the oscillation
monitoring.

A. Modal Participation Ratio (MPR)

The MPR of the ith complex mode within the kth measure-
ment is defined as follows:

pki = E

 ψki∑
v∈M

ψkv

 = E

 2
∣∣∣ckri (lix0 + liBu0

λi

)∣∣∣∑
v∈M

∣∣∣ckrv (lvx0 + lvBu0

λv

)∣∣∣


(11)
where E (·) is expectation operator. Equation (11) is explained
as follows. First, the fraction term describes the relative initial
amplitude ψi of the complex mode i in a given measurement,
compared with the rest of modes in yk. Second, such relative
initial amplitude is a stochastic variable as mentioned before,
so an expectation operation is conducted in order to obtain an
average initial amplitude in the potential measurements based
on the stochastic disturbance, rather than those due to a fixed
disturbance. Third, a high value of pki suggests relatively high
“proportion” of complex mode mki within given measurement
yk. If the complex mode mki happens to be of interest, the
potential measurement yk would be suitable for observing the
poorly damped oscillations corresponding to mki, and distinct
peak can be expected right at the frequency corresponding
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to mki. The MPR defined by Equation (11) satisfies the two
requirements presented at the end of section II.

Recall x in (1) represents the state deviation from the steady
state of the system, then x is a zero vector in the steady state.
Besides, the disturbance is typically injected into the system
through the input vector u rather than the direct perturbation
of the internal state variables x. Then the initial condition is
assumed to be a zero vector. Therefore, Equation (11) reduces
to

pki = E

 2
∣∣ckriliBu0λ

−1
i

∣∣∑
v∈M

∣∣ckrvlvBu0λ
−1
v

∣∣
 , i ∈M (12)

which can be evaluated by Monte Carlo Simulation. It is worth
pointing out that u0 cannot cancel out in (12) since there are
absolute operations in the denominator of (12). Meanwhile,
Equation (7) reduces to

ψki = 2
∣∣ckriliBu0λ

−1
i

∣∣ , i ∈M (13)

For the modes corresponding to real eigenvalues, its MPR and
initial amplitude are forced to be zero, i.e.,

pki = ψki = 0, i /∈M (14)

Built upon (12), (13) and (14), all MPRs and initial amplitudes
can be organized into the matrix form, namely, the MPR matrix
P = [pki] and the initial amplitude matrix Ψ = [ψki], which
serve as intermediate indicators for calculating MPR matrix in
the sequel. In the matrix P and Ψ, the kth row corresponds to
the kth potential measurement and the ith column corresponds
to the ith complex mode. Besides, the algorithm for computing
these two matrices runs as follows:

Algorithm 1 Computing MPR matrix
1: Specify Monte Carlo simulation times Tmc.
2: Calculate Λ, M , M−1 based on A matrix in (1).
3: Find set M based on (9).
4: ∆← 0m,n

1.
5: for tmc = 1 to Tmc do
6: Generate a set of uniformly distributed random values

showing as (4) and set it as u0.
7: Calculate each element ψki in Ψ by (13) and (14).
8: Obtain normalized version of matrix Ψ = [ψki] by

ψki ←
ψki∑

v∈M
ψkv

9: ∆← ∆ + Ψ;
10: end for
11: Obtain the MPR matrix by P = T−1

mc ∆.

B. Comparison with Existing Concepts

The other two candidate indices relevant to our problem
are the mode in output participation factor [12] and the
geometric measure [9]. In this section, we conduct conceptual
comparison between MPR and these two existing indices.

10m,n is a zero matrix with m rows and n columns.

The modes in output participation factor is built upon mode
in state participation factor introduced in [13] and is defined
as follows

pki := E

(
lix0ckri + l̄ix0ckr̄i

yk(0)

)
, (15)

it measures the participation of ith complex mode in the kth
potential measurement. In (15), disturbance uncertainties are
considered to be from the initial state vector x0. However, in
this paper, we assume disturbance uncertainties come from the
input vector u and each component in u is modeled as a step
change with a stochastic amplitude. This assumption makes
more physical sense, since it intuitively can represent abrupt
changes of loads and generator setpoints at certain time instant,
which may excite some critical modes. In order to scrutinize
the physical meaning of mode in output participation factor
(MOPF) and to make a fair comparison between MPR and
MOPF, we temporarily assume disturbances directly impact
the initial state vector x0 and eliminate the output term Bu
in (1). Then we find that the process of defining the MPR
in (11) and the factor in (15) share similarity in terms of
dealing with uncertainty in the system. Both concepts assumes
that the evolution of complex modes does not only depend on
the system inherent property, i.e., the eigen-structure, but are
also determined by the disturbance uncertainties. Hence, both
concepts consider the effect of disturbance uncertainties.

However, the physical meanings of these two factors are
different. Under the temporary assumption on the source of
disturbances, the complex mode mki in (6) reduces into

mki = 2 |lix0ckri| eαit cos(βit+ φi) (16)

where
φi = tan−1 Im(lix0ckri)

Re(lix0ckri)
.

At t = 0, mki(0) = Re(lix0ckri), which exactly is nu-
merator of (15). Therefore, the mode in output participation
factor describes the percentage of the complex mode i in the
initial value of kth output yk0. If a potential measurement
yk can be viewed as the superposition of complex modes,
decaying exponential terms and a constant as in (8), the mode
in output participation factor in (15) can be employed to
suggest the relative magnitudes of complex modes, rather than
their initial amplitudes. However, the initial amplitude of the
complex mode serves as a direct indicator of the height of
the corresponding peak in the PSD, whereas the factor in (15)
only characterizes the initial value of mki in (16), which is
a lower bound of the initial amplitude. Therefore, there is
no direct connection between the peaks in PSD and MOPF.
This renders Equation (15) improper to serve as an indicator
for identifying critical PMU signals to monitor the oscillation
modes of interest, even though disturbances are assumed to be
from initial state vector x0. It is worth emphasizing that, when
computing MPR, the disturbance uncertainty is considered to
be from the input vector u and the impact of matrix B cannot
be eliminated.

Geometric measure (GM) overcomes the limitation that
Popov-Belevitch-Hautus (PBH) test only can offer a yes-or-no
answer, and is designed to measure the modal controllability
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and observability [9]. The GM of modal observability of mode
i for system (1) in measurement k is defined as follows [9]

gk,i = cos [θ(ck, r
T
i )] =

|ckri|∥∥ck∥∥‖ri‖ (17)

where |·| is the magnitude of a complex value and ‖·‖ is
2-norm of a vector. Though its physical meaning can be
explained from energy point of view [9], in the context of
capturing modes of interest directly by decomposing raw
measurements, such an explanation becomes obscured. Be-
sides, all information needed for computing GM is from
the inherent property of the system model, i.e., measurement
vector ck and right eigenvector ri, but no characteristics from
uncertain disturbances are utilized. According to Equation
(13), the initial amplitude of complex mode i in measurement
k depends both on structural parameters of power systems, i.e.,
ckriliB and λi, and uncertain disturbances u0. Admittedly,
the uncertain disturbance u0 does not play a role on the
initial amplitude when ckriliB = 0. However, the product
of ckri and liB may not be a “perfect” zero in most practical
case, unless the complex mode i is either unobservable, i.e.,
ckri = 0 or uncontrollable i.e., liB = 0, which is out of the
scope of this study. Further comparison will also be presented
in part IV via simulation.

C. Threshold Selection for Dominant Complex Mode in Given
Measurement

In this section, we present a quantitative threshold in terms
of initial amplitude ψki to determine the suitable signals for
observing a given modes of interest. The k-th candidate signal
is said to be suitable for observing the i-th complex mode if
its MPR pki satisfies pki ≥ γ supv∈[1,2,··· ,m] pvi, where γ is
a user-defined parameter and is empirically set to be 0.75 in
this paper. Meanwhile, we define

Ki =

{
i ∈ Z | pki ≥ γ sup

v∈M
pkv, i ∈M

}
. (18)

Ki in Equation (18) can be employed to find the indices of the
possible measurements suitable for observing a given complex
mode i.

D. Hierarchical Scheme for Optimal PMU Placement and
Signal Selection

Some PMUs have already been deployed in the system
based on either engineering intuition or requirements of
standards, so the classical PMU-placement problem can be
further broken into the following sub-problems: 1) identify the
existing PMU signals that are most appropriate for observing
a particular mode of interest; 2) identify the best locations for
installing new PMUs, which could observe a particular mode
that is unobservable using existing PMUs.

The first layer of the algorithm checks whether the further
deployment of PMUs is needed and identify the best PMU
signals for observing the modes of interest. Typically, one
PMU has multiple channels, which allows us to observe all
kinds of measurements relative to the bus where this PMU is
installed. Suppose the set B collects the indices of the buses

equipped with PMUs and each element in the set Gk represents
the indice of PMU channel installed at Bus k, then the first-
layer algorithm is presented as follows:

Algorithm 2 Layer 1: the existing signals selection

1: H ← 0m,n; find M̂ by (10); M̂observed ← ∅.
2: for i ∈ M̂ do
3: Find Ki by (18).
4: hvi ← 1, ∀v ∈ Ki.
5: for k ∈ B do
6: if Gk ∩ Ki 6= ∅ then
7: M̂observed ← M̂observed ∪ {i}.
8: Mode of interest i could be observed by

the PMU installed at bus k via measurement
arg max

v∈Gk∩Ki

pvi.

9: end if
10: end for
11: end for
12: if M̂ − M̂observed = ∅ then
13: All modes of interest can be reliably captured by

existing PMUs.
14: else
15: Further deployment of PMU is needed.
16: end if

The set M̂observed stores the indices of complex modes
which cannot be reliably observed from existing PMUs, so
further deployment should be conducted for observing the
complex modes in M̂observed. In order to limit or minimize
the number of further deployed PMUs, the selected buses for
installing PMUs should allow us to observe as many modes of
interest as possible using PMU signals from various channels.

For the sake of convenience, the following definitions
are presented. Suppose the system represented by (1) has
m′ buses, each bus includes several potential measure-
ments in y. Besides, m′ × n matrix Ĥ = [ĥkv] is de-
noted by [ĥ

T

1 , ĥ
T

2 , · · · , ĥ
T

k , · · · , ĥ
T

m′ ]T where ĥk ∈ Rn
is a row vector. Meanwhile, Ĥ can also be denoted by
[ĥ′

1, ĥ
′
2, · · · , ĥ′

i, · · · , ĥ′
n], where ĥ′

i ∈ Rm′
is a col-

umn vector. Similarly, m × n matrix H can be denoted by
[hT1 ,h

T
2 , · · · ,h

T
v , · · · ,h

T
m′ ]T .

Then the second layer algorithm is introduced to identify
the optimal locations for installing new PMUs, in order to
observe the modes of interest that are unobservable using
existing PMUs.

It is worth pointing out that the proposed two-layer algo-
rithm also works in systems without existing PMUs. In this
case, layer 1 is skipped due to B = ∅.

E. An Online Scheme for Monitoring Critical Power System
Oscillations Based on Two-layer Algorithm

In power systems, there are several qualitatively different
operating conditions due to seasonal load levels and different
network topologies [14]. What we propose could be potentially
coupled with an online screen tool which determines which
scenario the system conditions belong to. Suggested use case
can be described by the following two-step approach:
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Algorithm 3 Layer 2: further deployment of PMUs

1: Ĥ ← 0n,m′ .
2: for k = 1 to m′ do
3: ĥk ←

∑
v∈Gk

hv .

4: ĥkv ← 1, ∀v ∈ {i ∈ Z | hki > 1}.
5: end for
6: M̂n ← M̂− M̂observed.
7: while M̂n 6= ∅ do
8: s =

∑
i∈M̂n

ĥ′
i, denoting by [s1, s2, · · · , sk, · · · , sm′ ]T

9: PMU should be installed in k̂-th bus, where

k̂ = arg max
k

sk.

10: Find Ik̂ by Ik̂ = {i ∈ Z | ĥk̂i = 1}.
11: for k ∈ Gk̂ do
12: Find Ik by Ik = {i ∈ Z | hki = 1}.
13: if Ik ∩ Ik̂ 6= ∅ then
14: Mode of interest Ik∩Ik̂ could be observed by the

PMU installed at bus k̂ via measurement k.
15: end if
16: end for
17: M̂n ← M̂n − Ik̂.
18: end while

1) Off-line Study: Let the set Π ={π1,π2, · · · , πj , · · · , πw}
denote the collection of w operating scenarios identified during
off-line studies. Each operating scenario represents a specific
loading condition and topology of the system. For each op-
erating scenario πj ∈ Π, the power system can be linearized
around the operating scenario πj and the corresponding A, B
and C matrix of the linearized system model can be obtained.
Built upon these matrices, the proposed algorithm embedded
with MPR can suggest location and/or selection of PMUs in
order to most effectively observe modes of interest under the
operating scenario πj . Then, under the operating scenario πj ,
we use Mπi

and k
πj

i to denote the set of complex modes
of interest and the measurements suitable for monitoring
complex mode i, respectively. Finally, the one-to-one mapping
between modes of interest under various operating scenarios
and the selected signals can form a lookup table, which can be
utilized in the real-time monitoring of critical power system
oscillations.

2) Online Application: During real-time operation of power
systems, the Energy Management System (EMS) will report
the current operating scenario πj . πj reflects the current
loading condition and topology of the system. Based on πj ,
the PMU signals suitable for monitoring modes of interest,
i.e., kπj

i for all i ∈ Mπj
, can be found in the lookup table

created during off-line study, and they will be displayed in
front of system operators. Once a poorly-damped mode is
excited, system operators will be informed by a distinct peak
around the frequency of the mode in the PSD of the selected
signal. For example, suppose there is a fault that causes the
topology of a power system to change, we use πj′ to denote
the operating scenario after the topology change. Several

modes collected by set Mπj′ might be of interest to system
operators and each mode can be effectively monitored by the
corresponding measurement selected by the lookup table.

Admittedly, exhausting the representative scenarios Π that
can explain every possible operating conditions may require
significant efforts for large-scale power systems. During the
initial stage of the proposed scheme, however, one can only
include the scenarios corresponding to severe operating con-
ditions, e.g., operating conditions when the system is heavily
loaded, into set Π. As the study on the power systems becomes
more and more thorough, it is promising to enumerate the rep-
resentative scenarios that can explain most possible operating
conditions.

IV. CASE STUDIES

The performance of newly-introduced indicator MPR and
the two-layer algorithm is validated in the modified benchmark
68-bus system (Fig.1) and the Northeastern Power Council
(NPCC) 140-bus system. The raw parameters for both systems
are available in the Power System Toolbox (PST) [15]. In
the both cases, the threshold ε, fl and fh in (10) are set
to be 5%, 0.1Hz and 2Hz, respectively. Besides, stochastic
disturbances in both test systems are modeled as random
changes on voltage references of voltage regulators V ref ,
mechanical power injections Pm and real and reactive power
of loads P l and Ql. The above three components constitutes
the vector u0 and each element u0

q is uniformly distributed
within [−0.1, 0.1].

A. Results of Two-layer Algorithm and Its Validation for the
68-bus System

1) 68-Bus System Description: For the 68-bus system, three
main modifications are made to the raw parameters. First,
in order to obtain poorly-damped complex modes, the gain-
washout time constant of the power system stabilizers (PSS) at
generator 9 is set to 200, and the PSSs at the rest of generators
are disabled. Second, load modulations of real and reactive
power are added to simulate the stochastic load fluctuation.
Third, the load and generation levels are set to be 65% of
the original level. Then, all the modal parameters of modes
of interest listed in Table I can be calculated based on matrix
A,B and C in (1).

In this test case, several existing PMUs are introduced,
based on the following engineering intuition: First, gener-
ators with relatively large capacity are considered as “im-
portant” generators, thus buses near those generators should
be equipped with PMUs. Second, PMU deployment should
spread over the whole grid, rather than focus on a limited
area. Hence, the existing PMUs are installed at Bus 2, 10, 19,
36 and 52.

2) Results for the Two-layer Algorithm: Table I contains
the result of each layer of the algorithm. The first-layer
algorithm selects PMU channels specifically for observing
complex mode 183 and 189 from existing PMUs. Since not
all the modes of interest can be observed from existing PMUs,
further deployment is needed. Then the second-layer algorithm
identifies the suitable locations for installing new PMUs.
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Fig. 1. 68-bus test system [16]: numbers of buses equipping with PMU are
boxed; the geographic locations of each selected channel in Table I are marked

Finally, we expect that modes of interest should manifest
themselves in waveforms recorded by their corresponding
channels, if those complex modes are excited.

TABLE I
RESULT OF TWO-LAYER ALGORITHM FOR 68-BUS SYSTEM

Layer Selected Channel i ξi(%) fi(Hz)

1
P from Bus 10 to 13 181 4.96 1.11
P from Bus 36 to 37 183 3.62 1.16
P from Bus 10 to 55 189 3.98 1.27

2 P from Bus 31 to 62 193 3.06 1.30
P from Bus 32 to 63 207 3.64 1.88

3) PSD Validation: In order to compare the performance
between selected and unselected PMUs in terms of observing
modes of interest, waveforms recorded by all the potential
measurements under a stochastic disturbance should be ob-
tained. To achieve this, the test system is represented by the
state-space model in (1) with 98 × 1 input vector u(t) and
525 × 1 output vector y(t). After a 30-second simulation,
the output vector y offers 525 sets of time series and each
of them contains 30 × 60 samples, representing 60-second
waveforms recorded by 525 measurement channels of PMUs
with a sampling rate of 60Hz. Besides, Gaussian noise with
a signal-to-noise ratio (SNR) of 45dB is added to each set of
time series. Finally, frequency components of each waveform
can be analyzed via Fast Fourier Transformation (FFT).

In our test case, instead of monitoring all the 525 wave-
forms, we only need to monitor five PMU channels for
determining whether the modes of interest are excited. If a
mode of interest is excited by a disturbance, this complex
mode would manifest itself as a dominant complex mode in the
selected PMU channel specifically selected for it. Therefore,
a peak would appear right at its frequency in the PSD. Fig. 2
presents the PSD of waveforms recorded by selected channels
under certain disturbance. These figures inform operators that
all the five modes of interest are excited, due to the five peaks
at frequencies of these complex modes.
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Fig. 2. PSD of selected signals for 68-bus system in Table I. The marked
peaks indicate all 5 modes of interest are excited: (a) Bus 10 to 13 P (solid
line), Bus 10 to 55 (dot line), • mode 181 at 1.11Hz, N mode 189 at 1.27Hz;
(b) Bus 36 to 37 P, � mode 183 at 1.16 Hz; (c) Bus 31 to 62 � mode 193
at 1.3Hz; (d) Bus 32 to 63, F mode 207 at 1.88Hz.

B. Results of Two-layer Algorithm and Its Validation for the
NPCC 140-bus System

For the NPCC 140-bus system, load modulations of real
and reactive power are added to the original system provided
by PST. Then, the matrix A,B and C in (1) can be extracted
by PST, and all the modes of interest in this case are listed
in Table II. Besides, based on the engineering intuition, the
existing PMUs are installed at Bus 22, 54, 71, 101 and 135.
Table II presents the result of each layer of algorithm. The
existing PMU at Bus 71 is selected for observing the complex
mode 295, and the locations of PMUs for observing the rest
of modes of interest are also suggested by the second layer
algorithm. As we can observe from Table II, in terms of bus
selection, the second layer algorithm gives high priorities to
the buses enabling us to observe multiple modes of interest.
Hence, suppose there is no existing PMU, only 7 buses
should be equipped with PMUs, although there are 13 modes
of interest. Besides, Fig. 3 shows each modes of interest
manifests itself in the signal selected for monitoring it.

C. Convergence Test of MPR

The MPR is calculated via Monte Carlo simulation, so a
natural question is whether the result of MPR depends on
the simulation time Tmc. Fig. 4 visualizes the variation of 5
elements in MPR as simulation times Tmc changes from 50
to 10,000 times (p262,183: solid line, p201,189: dash-dot line,
p195,181: dash line, p260,193: dot line and p261,207: dash-circle
line). As shown in Fig. 4, the selected elements in the MPR
matrix tend to be bounded as simulation time Tmc increases.
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TABLE II
RESULT OF TWO-LAYER ALGORITHM FOR THE NPCC 140-BUS SYSTEM

Bus Selected Channel i ξi(%) fi (Hz)
71 Frequency Deviation 295 4.53 0.91

8 P from Bus 8 to 9 181 1.37 0.62
P from Bus 8 to 18 293 3.79 0.89

53 P from Bus 53 to 52 325 4.51 1.16
P from Bus 53 to 65 371 2.53 1.64

68 Frequency deviation 375 2.41 1.68
385 2.05 1.99

92 P from Bus 92 to 97 327 4.82 1.22
Q from Bus 92 to 97 359 3.15 1.42

117 P from Bus 117 to 121 321 4.51 1.16
P from Bus 117 to 119 383 2.15 1.85

118 P from Bus 118 to 123 365 2.98 1.49
373 2.41 1.68
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Fig. 3. PSD of selected signals for NPCC 140-bus system in Table II.(a)
Bus 8 to 9 (solid line), 0.62Hz (square); Bus 8 to 18 P (dot line), 0.89Hz
(triangle); (b) Bus 53 to 52 (solid line), 1.16Hz (square); Bus 53 to 65 P
(dot line), 1.64Hz (triangle); (c) Bus 68 Freq (solid line), 1.68Hz (square),
1.99Hz (triangle); (d) Bus 92 to 97 P (solid line), 1.22Hz (square), Bus 92 to
97 Q (dot line), 1.42Hz (triangle); (e) Bus 117 to 121 P (solid line), 1.16Hz
(square), Bus 117 to 119 P (dot line), 1.85Hz (triangle); (f) Bus 118 to 123 P
(solid line), 1.49Hz (square), 1.68Hz (triangle); Bus 71 freq (dot line), 0.19Hz
(hexagram).

D. Impact of Uncertain Disturbance on Proportion of Com-
plex Modes in Measurements

Under certain disturbance, some unselected signals seem
to be suitable for observing modes of interest. In Fig. 5,
the left figure represents the PSD of the selected signal, i.e.
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Fig. 4. The convergence test for 5 selected elements in MPR matrix.

the real power waveform from Bus 36 to Bus 37; the right
figure represents the PSD of the unselected signal, i.e. the
real power from Bus 65 to Bus 37. Under disturbance u1,
the dash line at the right figure shows a distinct peak right
at the frequency of the mode of interest, then the unselected
signal might be also considered suitable for observing complex
mode 183. However, under another disturbance u2, a distinct
peak corresponding to complex mode 183 is presented in the
selected signals (solid line in right figure), whereas no distinct
peak corresponding to the complex mode 183 can be observed
from the unselected signals (solid line in left figure). Thus,
the unselected signal might not be suitable for observing the
complex mode 183. Although the disturbance uncertainties
cause the variation in the of the peak marked with square,
it is sufficient to conclude that complex mode 183 is excited
based on the selected signal.
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Fig. 5. The impact of uncertain disturbance on the PSD of signals

Another demonstrative scenario can be synthesized from
right figure of Fig. 5 to articulate the necessity for this
research. Suppose only the channel measuring real power from
bus 65 to 37 is monitored, the operators may only observe
the two uninterested complex modes below 1Hz, and might
not be sure whether the complex mode 183 is excited when
disturbance u2 happens. Therefore, they might not take any
action due to relatively high damping ratio of those two modes.
However, the system is suffering from the sustained oscillation
caused by complex mode 183, which may not be observed
through the monitored PMU channel. However, if the PMU
channel from bus 36 to bus 37 is monitored, the poorly-
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damped complex mode 183 could be observed by system
operators.

E. Comparison with Geometric Measure

Now we present the performance comparison between MPR
and GM in terms of observing complex modes. To perform
comparison, the MPR p̂k,i and GM ĝk,i are normalized by
dividing sup

v∈M
pk,v and sup

v∈M
gk,v , respectively.

The channel measuring reactive power from bus 1 to 2 is
selected for comparing the accuracy of the two indices. The
left figure in Fig. 6 is the visualization of MPR (solid line)
and GM (dash-dot line) for this channel. It shows an obvious
discrepancy between MPR and GM: GM suggests this meter is
suitable for observing the complex mode 163 with a frequency
of 0.4162Hz, whereas MPR indicates opposite results. If GM
is reliable, we would expect a peak around 0.4162Hz in PSD
of the waveform recorded by this channel, when this complex
mode is excited. However, according to the solid line in the
right figure, complex the mode 163 does not manifest itself at
the aforementioned channel, while it is indeed excited due
to the appearance of a peak around 0.4162Hz in the PSD
of another PMU waveform (dash-dot line). Therefore, the
proposed MPR method offers some advantage in terms of
reliably identifying suitable PMU signals for modes of interest.
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Fig. 6. Performance Comparison between MPR and GM.

F. Robustness Test

In the preceding discussion, a set of measurements Ki
suitable for observing the complex mode i is selected based
on one loading condition and an exact system model in (18).
However, one might expect to know the changes of the set
Ki under other loading conditions, and whether the selected
measurement set Ki can tolerate model errors. In this section,
we explore the robustness of the proposed algorithm with
respect to different levels of loading conditions and model
errors.

1) The Impact of Different Loading Conditions: For a
given mode of interest i, we can use KCload

i to represent the
measurement set selected by (18) under one loading condition
Cload, i.e., Cload = {100%}. Meanwhile, one might wonder the
changes of the result of the two-layer algorithm, Kc̄load

i , under
other loading conditions c̄load, compared with KCload

i . In order
to quantify the overlap of results under two different load-
ing condition, define rc̄load

i as
∣∣∣KCload

i ∩ Kc̄load
i

∣∣∣/∣∣∣KCload
i

∣∣∣, where
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Fig. 7. Visualization of rc̄load
i for the 68-bus system.

c̄load ∈ {50%, 55%, · · · , 150%} and each element represents
the percentage of the loading condition in the original test
case. Then rc̄load

i can be visualized as in Fig. 7. It suggests
that the result of the first-layer algorithm under the loading
condition Cload can also be applied in the system under the
rest of the loading condition c̄load, for the complex modes with
frequencies around 1.16 Hz, 1.27 Hz, 1.3 Hz and 1.88 Hz.

2) The Impact of Different Levels of Model Errors:
Similarly, we use K0

i to denote the selected sets of mea-
surements suitable for observing complex mode i, based on
the “perfect” model. Then the parameters of all transmis-
sion lines and generators are modified by adding/reducing
random percentages of their original values. The percentage
is uniformly distributed within [−cerror, cerror], where cerror ∈
{5%, 10%, 15%, 20%}. For the sake of convenience, we de-
fine cerror as the level of model error. Finally, rcerror

i =∣∣K0
i ∩ K

cerror
i

∣∣/∣∣K0
i

∣∣ characterizes the change of results due to
model errors. Table IV indicates that the proposed algorithm
can tolerate moderate model errors, e.g., no more than 5% of
parameter changes.

Although the measurements suitable for monitoring modes
of interest are selected based on an exact model in the pre-
ceding section, the proposed algorithm embedded with MPR
allows some reasonable model errors. For example, suppose
the level of model error is 5%, there are also 5 modes of
interest with inaccurate modal frequencies as shown in the
third column of Table III. Then the measurements suitable
for observing each inaccurate modes are selected based on
inaccurate model. According to Table IV, the result is the same
with the case when the exact model is used, even though the
measurements are selected based on an inaccurate model.

TABLE III
FREQUENCIES OF POORLY-DAMPED MODES WITH DIFFERENT LEVELS OF

MODEL ERROR

i

freq (Hz) cerror
0% 5% 10% 15% 20%

181 1.1078 1.1114 1.1026 1.1107 1.0720
183 1.1577 1.1537 1.1775 1.2079 1.1965
189 1.2740 1.2871 1.2584 1.2471 1.2550
193 1.2779 1.2938 1.2674 1.2576 1.2607
207 1.8809 1.8921 1.9082 1.8201 1.9729
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It is also possible that the actual critical modes are not
in the vicinity of the modes calculated from offline models.
In this case, system operators or planners should correct
their first-principle model such that all mode of interest are
properly included. Given active and ongoing model validation
projects in power industry, as well as higher requirements of
mandatory standards on model accuracy, it is not impossible
to approximately characterize the actual critical modes from
offline models in the near future.

TABLE IV
rcERROR
i OVER DIFFERENT LEVEL OF PARAMETER ERRORS IN THE 68 BUS

SYSTEM

i

rcerror
i cerror

5% 10% 15% 20%

181 100% 76.92% ×1 ×
183 100% 100% 100% 66.67%
189 100% 100% 66.67% 54.56%
193 100% 100% 50% 33.33%
207 100% 100% × 70%

V. CONCLUSION

This paper introduced a robust indicator, MPR, for iden-
tifying critical PMU locations and signal channels, in order
to better monitor power system oscillations with specific
oscillation modes. Based on the proposed MPR, two-layer
algorithm is presented. System operators and planners can
benefit from this algorithm in the following two ways: 1) it
identifies existing PMU devices and signal channels, which
provides sufficient observability for critical oscillation modes;
2) it suggests optimal locations for further PMU deployments,
in order to enhance the observability for critical oscillation
modes. From a research perspective, this paper points out that
the distribution of modal information among all measurements
depends both on the system parameters and the characteristics
of the disturbance.

APPENDIX A
DERIVATION OF TIME-DOMAIN SOLUTION OF

MEASUREMENTS

Here, we present the derivation process for (5). Equation
(2a) can be expanded as

ż1

ż2

...
żi
...
żn


=



λ1

λ2

. . .
λi

. . .
λn





z1

z2

...
zi
...
zn



+



l1b1 l1b2 · · · l1bq · · · l1bd
l2b1 l2b2 · · · l2bq · · · l2bd

...
...

. . .
...

. . .
...

lib1 lib2 · · · libq · · · libd
...

...
. . .

...
. . .

...
lnb1 lnb2 · · · lnbq · · · lnbd





u1

u2

...
uq
...
ud



(19)

1“×” indicates that the corresponding complex mode is not the one of
interest.

where bq is the q-th column of B matrix in (1), and the rest
notations are consistent with that in Section II. For i-th mode

żi = λizi+lib1u1 +lib2u2 +· · ·+libquq+· · ·+libdud (20)

Then we conduct Laplace transform for both sides of (20) and
obtain

zi(s) =
z0
i

(s− λi)
+

1

s− λi

d∑
q=1

libqu
0
q

λi
− 1

s

d∑
q=1

libqu
0
q

λi
(21)

where z0
i is the value of i-th mode at t = 0 and u0

q has the
same meaning as it in (3). Through inverse Laplace transform,
the time-domain evolution of i-th mode can be obtained as
follows:

zi(t) = z0
i e
λit + eλit

d∑
q=1

libqu
0
q

λi
−

d∑
q=1

libqu
0
q

λi
(22)

Similarly, we expand (2b) as

y1

y2

...
yk
...
ym


=



c1r1 c1r2 · · · c1rn
c2r1 c2r2 · · · c2rn

...
...

. . .
...

ckr1 ckr2 · · · ckrn
...

...
. . .

...
cmr1 cmr2 · · · cmrn





z1

z2

...
zi
...
zn


(23)

Then the evolution of k-th measurement is

yk =

n∑
i=1

ckri

(
z0
i e
λit + eλit

d∑
q=1

libqu
0
q

λi
−

d∑
q=1

libqu
0
q

λi

)

=

n∑
i=1

[
ckri

(
z0
i +

liBu0

λi

)
eλit

]
−

n∑
i=1

[
ckri

liBu0

λi

]
(24)

Besides, the decoupled modes z are transformed from the orig-
inal state variables x based on the relationship z = M−1x.
In particular, the i-th mode zi at t = 0 can be obtained by

z0
i = lix0 (25)

Finally, plugging (25) into (24), we obtain (5).
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